meshgrid_op.cc 4.5 KB
Newer Older
S
suytingwan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include <vector>

19
#include "paddle/fluid/framework/infershape_utils.h"
H
hong 已提交
20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
H
hong 已提交
22 23 24
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"

S
suytingwan 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
namespace paddle {
namespace operators {

using framework::Tensor;

class MeshgridOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto inputs = ctx.MultiInput<Tensor>("X");
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
    for (auto* input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
42
        input_data_type = framework::TransToProtoVarType(input->dtype());
S
suytingwan 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "All Inputs of Meshgrid OP are Empty!"));
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class MeshgridOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor, default Tensor<float>).").AsDuplicable();
    AddOutput("Out", "(Tensor, default Tensor<float>.)").AsDuplicable();

    AddComment(R"DOC(
Meshgrid Operator.
Take: N tensors, each of which can be either scalr or 1-dimensional vector, and create
N-dimensional grids.

Args:
  tensors (list of tensor): if the input k tensors has (N1,), (N2,),..., (Nk,), then 
  the output tensors are all of size (N1, N2, ...., Nk).

Example::
>>> x = fluid.data(name='x', shape=[10], dtype='float64')
>>> y = fluid.data(name='y', shape=[20], dtype='float64')
>>> grid_x, grid_y = fluid.layers.meshgrid([x, y])
>>> grid_x.shape
(10,20)
>>> grid_y.shape
(10,20)
)DOC");
  }
};

class MeshgridGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_GT(ctx->Inputs(framework::GradVarName("Out")).size(), 1,
                      platform::errors::InvalidArgument(
K
Kqnonrime 已提交
91 92 93
                          "Number of Inputs(Out@Grad) should be larger than 1."
                          "But received Inputs(Out@Grad)' size = %d .",
                          ctx->Inputs(framework::GradVarName("Out")).size()));
S
suytingwan 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class MeshgridGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("meshgrid_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
124 125
DECLARE_INFER_SHAPE_FUNCTOR(meshgrid, MeshgridInferShapeFunctor,
                            PD_INFER_META(phi::MeshgridInferMeta));
S
suytingwan 已提交
126 127
REGISTER_OPERATOR(meshgrid, ops::MeshgridOp, ops::MeshgridOpMaker,
                  ops::MeshgridGradOpMaker<paddle::framework::OpDesc>,
H
hong 已提交
128 129
                  ops::MeshgridGradOpMaker<paddle::imperative::OpBase>,
                  MeshgridInferShapeFunctor);
S
suytingwan 已提交
130
REGISTER_OPERATOR(meshgrid_grad, ops::MeshgridGradOp);