amp_auto_cast.cc 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/amp_auto_cast.h"
16

17 18
#include <memory>
#include <string>
19

J
Jiabin Yang 已提交
20
#include "paddle/fluid/eager/eager_tensor.h"
21
#include "paddle/fluid/imperative/tracer.h"
J
Jiabin Yang 已提交
22 23
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/imperative/var_helper.h"
24 25 26 27

namespace paddle {
namespace imperative {

W
wanghuancoder 已提交
28 29
class VarBase;

L
Leo Chen 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string& place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place&)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
  };
  PADDLE_ENFORCE_NE(is_target_place.count(query_place), 0,
                    platform::errors::InvalidArgument(
                        "The argument `place` should be 'GPU', 'CPU', 'XPU', "
                        "'NPU', 'MLU', but got '%s'.",
                        place));

  std::unordered_set<std::string> all_ops;
  const auto& op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto& kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

75 76
  auto phi_kernels = phi::KernelFactory::Instance().kernels();
  for (auto& kernel_pair : phi_kernels) {
77
    auto op_type = phi::TransToFluidOpName(kernel_pair.first);
L
Leo Chen 已提交
78 79
    for (auto& info_pair : kernel_pair.second) {
      framework::OpKernelType kernel_type =
80
          framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
L
Leo Chen 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
      if (is_target_place[query_place](kernel_type.place_) &&
          kernel_type.data_type_ == dtype && all_ops.count(op_type)) {
        VLOG(4) << op_type << " " << supported_ops.size();
        supported_ops.emplace(op_type);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto& op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

L
Leo Chen 已提交
104 105 106 107 108 109 110 111 112 113 114
AutoCastGuard::AutoCastGuard(std::shared_ptr<Tracer> tracer, AmpLevel level)
    : tracer_(tracer) {
  pre_amp_level_ = tracer_->GetAmpLevel();

  if (pre_amp_level_ != level) {
    tracer_->SetAmpLevel(level);
  }
}

AutoCastGuard::~AutoCastGuard() { tracer_->SetAmpLevel(pre_amp_level_); }

115 116
AmpOperators::AmpOperators()
    : allow_ops_(new std::unordered_set<std::string>()),
117
      block_ops_(new std::unordered_set<std::string>()),
118 119
      unsupported_fp16_ops_(new std::unordered_set<std::string>()),
      unsupported_bf16_ops_(new std::unordered_set<std::string>()) {
L
Leo Chen 已提交
120
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
121
  auto unsupported_ops_gpu_fp16 = std::get<2>(
L
Leo Chen 已提交
122
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::FP16));
123 124 125 126 127 128
  unsupported_fp16_ops_->insert(unsupported_ops_gpu_fp16.begin(),
                                unsupported_ops_gpu_fp16.end());
  auto unsupported_ops_gpu_bf16 = std::get<2>(
      OpSupportedInfos("GPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_gpu_bf16.begin(),
                                unsupported_ops_gpu_bf16.end());
Q
qipengh 已提交
129
// NOTE: GPU/NPU/XPU/MLU is compiled seperatly.
L
Leo Chen 已提交
130
#elif defined(PADDLE_WITH_ASCEND_CL)
131
  auto unsupported_ops_npu_fp16 = std::get<2>(
L
Leo Chen 已提交
132
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::FP16));
133 134 135 136 137 138
  unsupported_fp16_ops_->insert(unsupported_ops_npu_fp16.begin(),
                                unsupported_ops_npu_fp16.end());
  auto unsupported_ops_npu_bf16 = std::get<2>(
      OpSupportedInfos("NPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_npu_bf16.begin(),
                                unsupported_ops_npu_bf16.end());
L
Leo Chen 已提交
139
#elif defined(PADDLE_WITH_XPU)
140
  auto unsupported_ops_xpu_fp16 = std::get<2>(
L
Leo Chen 已提交
141
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::FP16));
142 143 144 145 146 147
  unsupported_fp16_ops_->insert(unsupported_ops_xpu_fp16.begin(),
                                unsupported_ops_xpu_fp16.end());
  auto unsupported_ops_xpu_bf16 = std::get<2>(
      OpSupportedInfos("XPU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_xpu_bf16.begin(),
                                unsupported_ops_xpu_bf16.end());
Q
qipengh 已提交
148 149 150 151 152 153 154 155 156
#elif defined(PADDLE_WITH_MLU)
  auto unsupported_ops_mlu_fp16 = std::get<2>(
      OpSupportedInfos("MLU", paddle::framework::proto::VarType::FP16));
  unsupported_fp16_ops_->insert(unsupported_ops_mlu_fp16.begin(),
                                unsupported_ops_mlu_fp16.end());
  auto unsupported_ops_mlu_bf16 = std::get<2>(
      OpSupportedInfos("MLU", paddle::framework::proto::VarType::BF16));
  unsupported_bf16_ops_->insert(unsupported_ops_mlu_bf16.begin(),
                                unsupported_ops_mlu_bf16.end());
L
Leo Chen 已提交
157 158
#endif
  VLOG(4) << allow_ops_->size() << " " << block_ops_->size() << " "
159 160
          << unsupported_fp16_ops_->size() << " "
          << unsupported_bf16_ops_->size();
161 162
}

163 164 165 166 167 168 169
AmpOperators::~AmpOperators() {}

AmpOperators& AmpOperators::Instance() {
  static AmpOperators instance;
  return instance;
}

170 171
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableAllowOps() {
172 173 174
  return allow_ops_;
}

175 176
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableBlockOps() {
177 178 179
  return block_ops_;
}

180 181 182 183 184
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedFp16Ops() {
  return unsupported_fp16_ops_;
}

185 186 187 188 189
std::shared_ptr<std::unordered_set<std::string>>
AmpOperators::GetMutableUnsupportedBf16Ops() {
  return unsupported_bf16_ops_;
}

190 191 192 193 194
std::ostream& operator<<(std::ostream& os, AmpOperators& ops) {
  os << "allow ops: ";
  auto allow_ops = ops.GetMutableAllowOps();
  std::copy((*allow_ops).begin(), (*allow_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
195
  os << "\n";
196 197 198 199
  os << "block ops: ";
  auto block_ops = ops.GetMutableBlockOps();
  std::copy((*block_ops).begin(), (*block_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
200 201 202 203 204
  os << "\n";
  os << "unsupported fp16 ops: ";
  auto unsupported_fp16_ops = ops.GetMutableUnsupportedFp16Ops();
  std::copy((*unsupported_fp16_ops).begin(), (*unsupported_fp16_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
205 206 207 208 209
  os << "\n";
  os << "unsupported bf16 ops: ";
  auto unsupported_bf16_ops = ops.GetMutableUnsupportedBf16Ops();
  std::copy((*unsupported_bf16_ops).begin(), (*unsupported_bf16_ops).end(),
            std::ostream_iterator<std::string>(os, " "));
210 211 212
  return os;
}

J
Jiabin Yang 已提交
213 214 215
template <typename VarType>
inline std::string GetDtypeStr(const std::shared_ptr<VarType>& var) {
  return framework::DataTypeToString(GetDataType<VarType>(var));
216
}
J
Jiabin Yang 已提交
217 218 219 220 221 222
template <typename VarType>
inline bool NeedCast(const std::shared_ptr<VarType>& var) {
  auto place = GetPlace(var);
  auto data_type = GetDataType<VarType>(var);
  if (paddle::platform::is_gpu_place(place) ||
      paddle::platform::is_cuda_pinned_place(place) ||
F
furnace 已提交
223
      paddle::platform::is_xpu_place(place) ||
Q
qipengh 已提交
224
      paddle::platform::is_mlu_place(place) ||
225
      paddle::platform::is_custom_place(place) ||
F
furnace 已提交
226 227
      paddle::platform::is_npu_place(place) ||
      paddle::platform::is_npu_pinned_place(place)) {
L
Leo Chen 已提交
228
    // CudaPinndePlace is added for varbase created by dataloader
J
Jiabin Yang 已提交
229
    if (data_type == paddle::framework::proto::VarType::FP32 ||
230 231
        data_type == paddle::framework::proto::VarType::FP16 ||
        data_type == paddle::framework::proto::VarType::BF16) {
L
Leo Chen 已提交
232 233
      return true;
    }
234
  }
L
Leo Chen 已提交
235
  return false;
236 237 238 239
}

// NOTE: Trace a cast op, so if a var is casted from fp32 to fp16, then the grad
// var will be cast back from fp16 to fp32 during backward phase.
J
Jiabin Yang 已提交
240 241 242
template <typename VarType>
static inline std::shared_ptr<VarType> CastToType(
    const std::shared_ptr<VarType>& var,
243 244
    const framework::proto::VarType::Type dst_type) {
  const auto& tracer = imperative::GetCurrentTracer();
J
Jiabin Yang 已提交
245 246
  imperative::NameVarMap<VarType> ins = {{"X", {var}}};
  framework::AttributeMap attrs = {{"in_dtype", GetDataType<VarType>(var)},
247
                                   {"out_dtype", dst_type}};
J
Jiabin Yang 已提交
248 249 250
  auto out =
      std::shared_ptr<VarType>(new VarType(tracer->GenerateUniqueName()));
  imperative::NameVarMap<VarType> outs = {{"Out", {out}}};
251 252

  {
L
Leo Chen 已提交
253
    AutoCastGuard guard(tracer, AmpLevel::O0);
254 255 256 257 258
    tracer->TraceOp("cast", ins, outs, std::move(attrs));
  }

  return out;
}
J
Jiabin Yang 已提交
259 260 261
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP16(
    const std::shared_ptr<VarType>& var) {
262
  auto dst_type = framework::proto::VarType::FP16;
J
Jiabin Yang 已提交
263
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
264 265 266 267 268
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
269 270 271
template <typename VarType>
static inline std::shared_ptr<VarType> CastToFP32(
    const std::shared_ptr<VarType>& var) {
272
  auto dst_type = framework::proto::VarType::FP32;
J
Jiabin Yang 已提交
273
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
274 275 276 277 278
    return CastToType(var, dst_type);
  }
  return var;
}

279 280 281 282 283 284 285 286 287 288
template <typename VarType>
static inline std::shared_ptr<VarType> CastToBF16(
    const std::shared_ptr<VarType>& var) {
  auto dst_type = framework::proto::VarType::BF16;
  if (NeedCast(var) && (GetDataType<VarType>(var) != dst_type)) {
    return CastToType(var, dst_type);
  }
  return var;
}

J
Jiabin Yang 已提交
289
template <typename VarType>
290
static inline framework::proto::VarType::Type GetPromoteType(
291 292 293
    const std::string& op_type, const NameVarMap<VarType>& ins,
    const framework::proto::VarType::Type amp_dtype) {
  auto dst_type = amp_dtype;
294 295
  for (const auto& pair : ins) {
    for (const auto& var : pair.second) {
J
Jiabin Yang 已提交
296 297
      if (GetDataType<VarType>(var) == framework::proto::VarType::FP32) {
        dst_type = GetDataType<VarType>(var);
298 299 300 301
        break;
      }
    }
  }
C
cc 已提交
302 303 304 305 306

  // NOTE(juncai): moving_average_abs_max_scale only consider the
  // dtype of input(X)
  if (op_type == "moving_average_abs_max_scale") {
    for (const auto& pair : ins) {
307 308
      if (pair.first == "X" && GetDataType<VarType>(pair.second.front()) ==
                                   framework::proto::VarType::FP16) {
C
cc 已提交
309 310 311 312 313
        dst_type = framework::proto::VarType::FP16;
      }
    }
  }

314 315 316
  return dst_type;
}

J
Jiabin Yang 已提交
317 318 319 320
template <typename VarType>
NameVarMap<VarType> AutoCastInputs(const std::string& op_type,
                                   const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
321 322 323
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
324 325
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
326 327 328 329
          pair.first != "X") {
        continue;
      }

330 331 332 333 334 335 336 337
      if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
        if (pair.first == "LnScale" || pair.first == "LnBias" ||
            pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
            pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
          continue;
        }
      }

338 339
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float16";
340
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
341
        var = CastToFP16<VarType>(var);
342 343 344
      }
    }
    return new_ins;
345 346
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    for (auto& pair : new_ins) {
347 348
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
349
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
350
        var = CastToFP32<VarType>(var);
351 352 353 354
      }
    }
    return new_ins;
  } else {
355 356
    auto dst_type =
        GetPromoteType<VarType>(op_type, ins, framework::proto::VarType::FP16);
C
cc 已提交
357

358 359 360 361 362 363
    // NOTE(zhiqiu): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::FP16 &&
        AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
364 365
    for (auto& pair : new_ins) {
      // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
366 367
      if ((op_type == "batch_norm" || op_type == "layer_norm" ||
           op_type == "sync_batch_norm") &&
368 369 370
          pair.first == "X" && dst_type == framework::proto::VarType::FP32) {
        continue;
      }
371 372 373 374 375 376 377 378
      if ((op_type == "fused_attention" || op_type == "fused_feedforwad") &&
          dst_type == framework::proto::VarType::FP32) {
        if (pair.first != "LnScale" && pair.first != "LnBias" &&
            pair.first != "Ln2Scale" && pair.first != "Ln2Bias" &&
            pair.first != "Ln1Scale" && pair.first != "Ln1Bias") {
          continue;
        }
      }
379 380 381
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
382
      for (auto& var : pair.second) {
J
Jiabin Yang 已提交
383 384 385
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToFP16<VarType>(var));
386 387 388 389
      }
    }
    return new_ins;
  }
390
  return new_ins;
391
}
J
Jiabin Yang 已提交
392 393
template NameVarMap<VarBase> AutoCastInputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
394 395
template NameVarMap<egr::EagerVariable> AutoCastInputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
J
Jiabin Yang 已提交
396 397 398 399
template <typename VarType>
NameVarMap<VarType> CastPureFp16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
400 401 402 403 404 405
  auto dst_type = framework::proto::VarType::FP16;
  if (AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
406 407 408 409 410 411 412
    // NOTE: The run_program OP only has FP32 kernel. In dy2stat pure fp16
    // training, we have correctly cast the inputs of run_program OP before,
    // so here should avoid casting for run_program OP.
    if (op_type == "run_program") {
      continue;
    }

413 414 415 416 417
    if ((op_type == "batch_norm" || op_type == "layer_norm" ||
         op_type == "sync_batch_norm") &&
        pair.first != "X") {
      continue;
    }
Z
zhangkaihuo 已提交
418 419 420 421 422 423 424
    if ((op_type == "fused_attention" || op_type == "fused_feedforward")) {
      if (pair.first == "LnScale" || pair.first == "LnBias" ||
          pair.first == "Ln2Scale" || pair.first == "Ln2Bias" ||
          pair.first == "Ln1Scale" || pair.first == "Ln1Bias") {
        continue;
      }
    }
425 426 427 428
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
J
Jiabin Yang 已提交
429 430 431
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToFP16<VarType>(var));
432 433 434 435
    }
  }
  return new_ins;
}
J
Jiabin Yang 已提交
436 437
template NameVarMap<VarBase> CastPureFp16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
438 439
template NameVarMap<egr::EagerVariable> CastPureFp16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);
440 441 442 443 444 445 446 447 448 449 450 451 452 453

template <typename VarType>
NameVarMap<VarType> AutoCastBF16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) {
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to bfloat16";
      for (auto& var : pair.second) {
        var = CastToBF16<VarType>(var);
      }
    }
    return new_ins;
454
  } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
455 456 457 458 459 460 461 462
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to float";
      for (auto& var : pair.second) {
        var = CastToFP32<VarType>(var);
      }
    }
    return new_ins;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
  } else {
    auto dst_type =
        GetPromoteType<VarType>(op_type, ins, framework::proto::VarType::BF16);
    // NOTE(zhangbo): if the op has op fp16 kernel, fall back to fp32.
    if (dst_type == framework::proto::VarType::BF16 &&
        AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(
            op_type)) {
      dst_type = framework::proto::VarType::FP32;
    }
    for (auto& pair : new_ins) {
      VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
              << GetDtypeStr(*pair.second.cbegin()) << " to "
              << framework::DataTypeToString(dst_type);
      for (auto& var : pair.second) {
        var = (dst_type == framework::proto::VarType::FP32
                   ? CastToFP32<VarType>(var)
                   : CastToBF16<VarType>(var));
      }
    }
    return new_ins;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
  }
  return new_ins;
}
template NameVarMap<VarBase> AutoCastBF16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> AutoCastBF16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

template <typename VarType>
NameVarMap<VarType> CastPureBf16Inputs(const std::string& op_type,
                                       const NameVarMap<VarType>& ins) {
  NameVarMap<VarType> new_ins(ins);
  auto dst_type = framework::proto::VarType::BF16;
  if (AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(op_type) ||
      AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) {
    dst_type = framework::proto::VarType::FP32;
  }
  for (auto& pair : new_ins) {
    VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from "
            << GetDtypeStr(*pair.second.cbegin()) << " to "
            << framework::DataTypeToString(dst_type);
    for (auto& var : pair.second) {
      var = (dst_type == framework::proto::VarType::FP32
                 ? CastToFP32<VarType>(var)
                 : CastToBF16<VarType>(var));
    }
  }
  return new_ins;
}
template NameVarMap<VarBase> CastPureBf16Inputs<VarBase>(
    const std::string& op_type, const NameVarMap<VarBase>& ins);
template NameVarMap<egr::EagerVariable> CastPureBf16Inputs<egr::EagerVariable>(
    const std::string& op_type, const NameVarMap<egr::EagerVariable>& ins);

517 518
}  // namespace imperative
}  // namespace paddle