graph_helper.cc 21.7 KB
Newer Older
X
better  
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15
#include "paddle/fluid/framework/ir/graph_helper.h"
16

17
#include <queue>
Y
Yan Chunwei 已提交
18
#include <stack>
19

20
#include "paddle/fluid/framework/details/multi_devices_helper.h"
21
#include "paddle/fluid/framework/op_proto_maker.h"
X
better  
Xin Pan 已提交
22

23
DECLARE_bool(convert_all_blocks);
24 25 26
PADDLE_DEFINE_EXPORTED_string(print_sub_graph_dir, "",
                              "FLAGS_print_sub_graph_dir is used "
                              "to print the nodes of sub_graphs.");
C
chengduo 已提交
27

X
better  
Xin Pan 已提交
28 29 30 31
namespace paddle {
namespace framework {
namespace ir {
namespace {
32 33 34 35

template <class NodeComparator = ir::NodeComp>
void SortHelper(const std::map<ir::Node *, std::set<ir::Node *, NodeComparator>,
                               NodeComparator> &adj_list,
36 37
                ir::Node *node, std::unordered_set<ir::Node *> *visited,
                std::vector<ir::Node *> *ret) {
X
better  
Xin Pan 已提交
38 39 40 41
  visited->insert(node);

  for (auto adj : adj_list.at(node)) {
    if (visited->find(adj) == visited->end()) {
42
      SortHelper<NodeComparator>(adj_list, adj, visited, ret);
X
better  
Xin Pan 已提交
43 44 45
    }
  }

Y
Yan Chunwei 已提交
46
  VLOG(5) << "topology sort insert: " << node->Name() << " "
M
minqiyang 已提交
47
          << reinterpret_cast<void *>(node) << " input " << node->inputs.size();
X
better  
Xin Pan 已提交
48 49 50
  ret->push_back(node);
}

51
template <class NodeComparator = ir::NodeComp>
X
better  
Xin Pan 已提交
52 53
bool HasCircleHelper(
    ir::Node *node,
54 55
    const std::map<ir::Node *, std::set<ir::Node *, NodeComparator>,
                   NodeComparator> &adj_list,
X
better  
Xin Pan 已提交
56
    std::unordered_set<ir::Node *> *visited,
D
dzhwinter 已提交
57 58
    std::unordered_set<ir::Node *> *in_trace,
    std::vector<std::vector<ir::Node *>> *circles) {
X
better  
Xin Pan 已提交
59 60 61 62 63 64
  if (visited->find(node) == visited->end()) {
    visited->insert(node);
    in_trace->insert(node);

    for (ir::Node *in : adj_list.at(node)) {
      if (visited->find(in) == visited->end() &&
65 66
          HasCircleHelper<NodeComparator>(in, adj_list, visited, in_trace,
                                          circles)) {
X
better  
Xin Pan 已提交
67 68
        return true;
      } else if (in_trace->find(in) != in_trace->end()) {
D
dzhwinter 已提交
69 70 71 72 73 74 75 76 77 78 79 80
        if (circles != nullptr) {
          std::vector<ir::Node *> circle;
          circle.emplace_back(in);
          ir::Node *p = in;
          for (auto &adj : adj_list.at(p)) {
            if (in_trace->count(adj)) {
              circle.emplace_back(adj);
              p = adj;
            }
          }
          circles->emplace_back(circle);
        }
X
better  
Xin Pan 已提交
81 82 83 84 85 86 87 88
        return true;
      }
    }
  }
  in_trace->erase(node);
  return false;
}

89
template <class NodeComparator = ir::NodeComp>
X
Xin Pan 已提交
90
bool HasCircleInternal(
91 92
    const std::map<ir::Node *, std::set<ir::Node *, NodeComparator>,
                   NodeComparator> &adj_list,
D
dzhwinter 已提交
93
    std::vector<std::vector<ir::Node *>> *circles) {
X
better  
Xin Pan 已提交
94 95 96
  std::unordered_set<ir::Node *> visited;
  std::unordered_set<ir::Node *> in_trace;
  for (auto &adj : adj_list) {
97 98
    if (HasCircleHelper<NodeComparator>(adj.first, adj_list, &visited,
                                        &in_trace, circles)) {
X
better  
Xin Pan 已提交
99 100 101 102 103
      return true;
    }
  }
  return false;
}
X
Xin Pan 已提交
104 105 106
}  // namespace

bool HasCircle(const Graph &graph) {
D
dzhwinter 已提交
107 108 109
  return HasCircleInternal(BuildOperationAdjList(graph), nullptr);
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
bool VarDescIsConsistency(const Graph &graph) {
  std::unordered_map<std::string, std::unordered_set<ir::Node *>>
      var_name2node_set;
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      var_name2node_set[node->Var()->Name()].emplace(node);
    }
  }
  for (auto &iter : var_name2node_set) {
    auto &first_node = *iter.second.begin();
    bool is_persistable = std::any_of(iter.second.begin(), iter.second.end(),
                                      [&first_node](const ir::Node *node) {
                                        return node->Var()->Persistable();
                                      });
    if (is_persistable) {
      bool is_consistency =
          std::all_of(iter.second.begin(), iter.second.end(),
                      [&first_node](const ir::Node *node) {
                        return *node->Var() == *first_node->Var();
                      });
      if (!is_consistency) return false;
    }
  }
  return true;
}
D
dzhwinter 已提交
135 136 137
bool FindCircleSubGraph(const Graph &graph,
                        std::vector<std::vector<ir::Node *>> *circles) {
  return HasCircleInternal(BuildOperationAdjList(graph), circles);
X
Xin Pan 已提交
138
}
X
better  
Xin Pan 已提交
139

X
Xin Pan 已提交
140
std::vector<ir::Node *> TopologySortOperations(const Graph &graph) {
141 142
  std::map<ir::Node *, std::set<ir::Node *, ir::NodeComp>, ir::NodeComp>
      adj_list = BuildOperationAdjList(graph);
143 144 145
  PADDLE_ENFORCE_EQ(HasCircleInternal(adj_list, nullptr), false,
                    platform::errors::InvalidArgument(
                        "Generated graph shouldn't contain cycle."));
X
better  
Xin Pan 已提交
146 147 148 149
  std::unordered_set<ir::Node *> visited;
  std::vector<ir::Node *> ret;
  for (auto adj : adj_list) {
    if (visited.find(adj.first) == visited.end()) {
150
      SortHelper<ir::NodeComp>(adj_list, adj.first, &visited, &ret);
X
better  
Xin Pan 已提交
151 152
    }
  }
153

X
better  
Xin Pan 已提交
154 155 156
  return ret;
}

Z
Zeng Jinle 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
bool IsTopologySortOperationsUnique(const Graph &graph) {
  auto nodes = TopologySortOperations(graph);
  size_t n = nodes.size();
  for (size_t i = 1; i < n; ++i) {
    auto *prev_op = nodes[i - 1];
    auto *cur_op = nodes[i];

    std::unordered_set<Node *> prev_op_outputs;
    for (auto *output : prev_op->outputs) {
      prev_op_outputs.insert(output);
    }

    bool found = false;
    for (auto *input : cur_op->inputs) {
      if (prev_op_outputs.count(input) > 0) {
        found = true;
        break;
      }
    }
    if (!found) {
      return false;
    }
  }
  return true;
}

Y
Yan Chunwei 已提交
183 184 185 186 187 188 189 190 191 192 193 194
// Build operator outlink edge table.
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationOutAdjList(
    const Graph &graph) {
  std::map<ir::Node *, std::unordered_set<ir::Node *>> adj_list;

  for (auto &n : graph.Nodes()) {
    if (!n->IsOp()) continue;
    if (adj_list.find(n) == adj_list.end()) {
      adj_list[n] = std::unordered_set<ir::Node *>();
    }
    for (auto &var : n->outputs) {
      for (auto &adj_n : var->outputs) {
195 196 197 198 199
        PADDLE_ENFORCE_EQ(
            adj_n->NodeType(), ir::Node::Type::kOperation,
            platform::errors::InvalidArgument(
                "Node(%s)'s type(%d) must be kOperation type.", adj_n->Name(),
                static_cast<int>(adj_n->NodeType())));
Y
Yan Chunwei 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        VLOG(40) << "adj " << adj_n->Name() << reinterpret_cast<void *>(adj_n)
                 << " -> " << n->Name() << reinterpret_cast<void *>(n)
                 << "  via " << var->Name() << reinterpret_cast<void *>(var);
        adj_list[n].insert(adj_n);
      }
    }
  }
  return adj_list;
}

std::vector<ir::Node *> OpDFSSort(const Graph &graph) {
  auto edge_table = BuildOperationOutAdjList(graph);
  std::stack<Node *> stack;
  for (auto &ele : edge_table) {
    if (ele.first->inputs.empty()) {
      // find the input ops (those without input vars)
      stack.push(ele.first);
    } else {
      // find the ops with only persistable vars as inputs.
      bool all_persistable = true;
      for (auto *input : ele.first->inputs) {
        if (!(input->IsVar() && input->Var() && input->Var()->Persistable())) {
          all_persistable = false;
        }
      }
      if (all_persistable) {
        stack.push(ele.first);
      }
    }
  }

  std::vector<Node *> res;
  // start from the feed op and DFS
  std::unordered_set<Node *> unique_set;
  while (!stack.empty()) {
    // will start from the last feed by default.
    auto cur = stack.top();
    stack.pop();
    unique_set.insert(cur);
    res.push_back(cur);

    for (auto *op : edge_table[cur]) {
      if (!unique_set.count(op)) {
        stack.push(op);
      }
    }
  }
  return res;
}

std::vector<ir::Node *> TopologyDfsSortOperations(const Graph &graph) {
  std::vector<ir::Node *> nodes;
  std::unordered_map<Node *, int> in_degree;

  auto set_out_ops_ready = [&](Node *var) {
    for (auto *op : var->outputs) {
      --in_degree[op];
    }
  };
  // build in_degree
  for (auto *node : graph.Nodes()) {
    if (node->IsOp()) {
      in_degree[node] += node->inputs.size();
    } else if (node->IsVar() && node->inputs.empty()) {
      // put all the inputs of the whole graph ready.
      set_out_ops_ready(node);
    }
  }

  std::deque<Node *> op_queue;
  // first visit
  for (auto &node : OpDFSSort(graph)) {
    if (node->IsOp()) {
      op_queue.push_back(node);
    }
  }

  // traverse the graph
  int num_ops = op_queue.size();
  while (num_ops) {
    for (auto it = op_queue.begin(); it != op_queue.end(); it++) {
      auto *&cur_op = *it;
      if (!cur_op || in_degree[cur_op] > 0) continue;
      // visit this node
      // put all the output var of this op valid.
      for (auto *out_var : cur_op->outputs) {
        if (!out_var) continue;
        set_out_ops_ready(out_var);
      }
      VLOG(8) << "visit " << cur_op->Name();
      nodes.push_back(cur_op);

      cur_op = nullptr;
      num_ops--;
    }
  }

  return nodes;
}

C
chengduo 已提交
300
size_t GraphNum(const Graph &graph) {
D
dzhwinter 已提交
301
  std::unordered_set<ir::Node *> nodes(graph.Nodes());
C
chengduo 已提交
302 303 304 305 306
  std::unordered_set<ir::Node *> visited_nodes;
  visited_nodes.reserve(nodes.size());
  std::deque<ir::Node *> q_nodes;
  std::vector<std::unordered_set<ir::Node *>> graph_nodes;
  std::unordered_set<ir::Node *> g_nodes;
W
Wu Yi 已提交
307 308
  // q_set used to record records in the queue.
  std::unordered_set<ir::Node *> q_set;
C
chengduo 已提交
309 310
  size_t graph_count = 0;

W
Wu Yi 已提交
311 312 313 314 315 316 317 318
  auto traverse_nodes = [&visited_nodes, &q_nodes,
                         &q_set](const std::vector<ir::Node *> &nodes) {
    for (auto n : nodes) {
      if (visited_nodes.count(n) == 0 && q_set.count(n) == 0) {
        q_nodes.push_back(n);
        q_set.insert(n);
      }
    }
C
chengduo 已提交
319 320 321 322 323 324
  };

  while (visited_nodes.size() != nodes.size()) {
    if (!q_nodes.empty()) {
      auto cur_node = q_nodes.front();
      q_nodes.pop_front();
W
Wu Yi 已提交
325
      q_set.erase(cur_node);
C
chengduo 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
      visited_nodes.insert(cur_node);
      g_nodes.insert(cur_node);
      traverse_nodes(cur_node->inputs);
      traverse_nodes(cur_node->outputs);
    } else {
      ++graph_count;
      if (g_nodes.size()) {
        graph_nodes.emplace_back(g_nodes);
      }
      g_nodes.clear();
      for (auto &n : nodes) {
        if (visited_nodes.count(n) == 0) {
          q_nodes.push_back(n);
W
Wu Yi 已提交
339
          q_set.insert(n);
C
chengduo 已提交
340 341 342 343 344 345 346 347 348 349
          break;
        }
      }
    }
  }

  if (g_nodes.size()) {
    graph_nodes.emplace_back(g_nodes);
  }

C
chengduo 已提交
350 351 352 353 354 355 356 357 358
  if (FLAGS_print_sub_graph_dir.size()) {
    if (graph_nodes.size() > 1) {
      std::stringstream out;
      for (auto &g_n : graph_nodes) {
        out << "graph_nodes: " << g_n.size() << "\n";
      }
      out << "\n\n";
      for (auto &g_n : graph_nodes) {
        out << "graph_nodes: " << g_n.size();
C
chengduo 已提交
359 360 361 362 363 364 365 366 367 368 369
        for (auto &node : g_n) {
          out << "\nNode: " << node->Name() << " in [";
          for (auto &n : node->inputs) {
            out << n->Name() << ", ";
          }
          out << "], out[";
          for (auto &n : node->outputs) {
            out << n->Name() << ", ";
          }
          out << "]";
        }
C
chengduo 已提交
370
        out << "\n\n\n";
C
chengduo 已提交
371
      }
C
chengduo 已提交
372 373
      std::unique_ptr<std::ostream> fout(
          new std::ofstream(FLAGS_print_sub_graph_dir));
374 375 376 377
      PADDLE_ENFORCE_EQ(fout->good(), true,
                        platform::errors::Unavailable(
                            "Can not open file %s for printing the graph.",
                            FLAGS_print_sub_graph_dir));
C
chengduo 已提交
378
      *fout << out.str();
C
chengduo 已提交
379 380 381 382 383 384
    }
  }

  return graph_count;
}

Y
Yan Chunwei 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
void CleanIndividualNodes(Graph *graph) {
  std::unordered_set<Node *> nodes2rm;
  for (auto *node : graph->Nodes()) {
    if (node->inputs.empty() && node->outputs.empty()) {
      nodes2rm.insert(node);
    }
  }

  for (auto *node : nodes2rm) {
    graph->RemoveNode(node);
  }
}

std::vector<Node *> TopologyVarientSort(const Graph &graph,
                                        SortKind sort_kind) {
  switch (sort_kind) {
    case SortKind::TS:
      return framework::ir::TopologySortOperations(graph);
    default:
      return framework::ir::TopologyDfsSortOperations(graph);
  }
}

408 409
class DescOrderComparator {
 public:
410 411 412 413 414 415 416 417
  bool operator()(Node *const &n1, Node *const &n2) const {
    if (n1->DescOrder() < n2->DescOrder()) {
      return true;
    } else if (n1->DescOrder() == n2->DescOrder()) {
      return n1->id() < n2->id() ||
             (n1->id() == n2->id() && n1->ToString() < n2->ToString());
    }
    return false;
418 419 420 421
  }
};

std::vector<ir::Node *> TopologySortGraphByDescOrder(const Graph &graph) {
422 423 424 425
  std::map<ir::Node *, std::set<ir::Node *, DescOrderComparator>,
           DescOrderComparator>
      adj_list = BuildOperationAdjList<DescOrderComparator>(graph);
  PADDLE_ENFORCE_EQ(HasCircleInternal<DescOrderComparator>(adj_list, nullptr),
426 427 428
                    false,
                    platform::errors::InvalidArgument(
                        "Generated graph shouldn't contain cycle."));
429 430 431 432 433
  std::unordered_set<ir::Node *> visited;
  std::vector<ir::Node *> ret;
  for (auto adj : adj_list) {
    if (visited.find(adj.first) == visited.end()) {
      SortHelper<DescOrderComparator>(adj_list, adj.first, &visited, &ret);
434 435 436
    }
  }

437
  return ret;
438 439
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static OpDesc *ReplaceScaleLossGradOp(const Node &node, OpDesc *desc) {
  desc->SetType("fill_constant");
  desc->SetAttr(
      OpProtoAndCheckerMaker::OpRoleAttrName(),
      (static_cast<int>(OpRole::kBackward) | static_cast<int>(OpRole::kLoss)));
  desc->SetAttr("value", 1.0f);
  std::vector<std::string> output_names;
  for (auto out : node.outputs) {
    output_names.emplace_back(out->Name());
  }
  desc->SetOutput("Out", output_names);
  return desc;
}

static void GetGraphOpDesc(const std::vector<Node *> &nodes,
                           std::vector<OpDesc> *ops) {
456 457 458 459 460 461 462 463 464 465 466 467 468
  auto is_fused_opt = [](Node *n) -> bool {
    auto op_type = n->Op()->Type();
    auto is_opt =
        (op_type == "adam" || op_type == "momentum" || op_type == "sgd");
    auto input_names = n->Op()->InputArgumentNames();
    auto contains_fused_var = std::any_of(
        input_names.begin(), input_names.end(), [](std::string name) {
          return name.find(details::kFusedVarNamePrefix) != std::string::npos;
        });
    VLOG(4) << is_opt << " " << contains_fused_var;
    return is_opt && contains_fused_var;
  };

469 470 471 472 473 474 475 476 477 478
  for (Node *n : nodes) {
    // if node is not Op, skip
    if (!n->IsOp()) continue;

    // create fill_constant op
    if (n->Name() == "scale_loss_grad") {
      ops->emplace_back();
      auto &desc = ops->back();
      ReplaceScaleLossGradOp(*n, &desc);
    } else if (n->Op()) {
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
      VLOG(4) << "convert op node to desc " << n->Op()->Type();
      VLOG(4) << n->ToString();
      if (is_fused_opt(n)) {
        OpDesc depend_desc(n->Op()->Block());

        std::vector<std::string> deps;
        for (auto in : n->inputs) {
          if (in->IsVar() && !in->IsCtrlVar()) {
            deps.push_back(in->Name());
          }
        }
        depend_desc.SetType("depend");
        depend_desc.SetInput("X",
                             n->Op()->Inputs().at(n->Op()->InputNames()[0]));
        depend_desc.SetInput("Dep", deps);
        depend_desc.SetOutput("Out",
                              n->Op()->Inputs().at(n->Op()->InputNames()[0]));
        ops->emplace_back(depend_desc);
        VLOG(4) << "add depend op";
      }
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
      ops->emplace_back(*n->Op());
    }
    // delete no OpDesc op
  }
}

static void GraphToBlock(const Graph &graph, proto::BlockDesc *block,
                         const SortKind *sort_kind) {
  // Remove the unneeded variables after memory optimization.
  std::unordered_set<std::string> vars2remove;
  if (graph.Has(kGraphToProgramVarsToRemove)) {
    vars2remove =
        graph.Get<std::unordered_set<std::string>>(kGraphToProgramVarsToRemove);
    VLOG(2) << "graph (id: " << block->idx() << ") to program remove "
            << vars2remove.size() << " nodes";
  }

  block->clear_vars();
  std::unordered_set<std::string> visited_vars;
  for (Node *n : graph.Nodes()) {
    if (n->IsVar()) {
      if (n->Var() && visited_vars.count(n->Var()->Name()) == 0 &&
          !vars2remove.count(n->Var()->Name()) &&
          n->GetVarNodeBlockId() == graph.GetBlockId()) {
        visited_vars.insert(n->Var()->Name());
        block->add_vars()->MergeFrom(*n->Var()->Proto());
      }
    }
  }
  block->clear_ops();

  std::vector<Node *> nodes;
  if (sort_kind != nullptr) {
    // Inference Memory Optimize relays on this branch.
    nodes = TopologyVarientSort(graph, *sort_kind);
  } else {
    if (FLAGS_convert_all_blocks) {
      nodes = TopologySortGraphByDescOrder(graph);
    } else {
      nodes = TopologySortOperations(graph);
    }
  }

  std::vector<OpDesc> ops;
  GetGraphOpDesc(nodes, &ops);
  for (auto &op : ops) {
    block->add_ops()->MergeFrom(*op.Proto());
  }
}

void GraphToProgram(const Graph &graph, ProgramDesc *program,
                    const SortKind *sort_kind) {
  PADDLE_ENFORCE_EQ(graph.IsMainGraph(), true,
                    platform::errors::InvalidArgument(
                        "This graph is a sub_graph, "
                        "and can't convert to program individually"));
  PADDLE_ENFORCE_NOT_NULL(
      program,
      platform::errors::InvalidArgument(
          "program must not be nullptr when converting graph to program"));

  proto::ProgramDesc program_pb(*(program->Proto()));
  auto block = program_pb.mutable_blocks(kRootBlockIndex);
  block->set_idx(kRootBlockIndex);

  if (FLAGS_convert_all_blocks) {
    GraphToBlock(*graph.GetSubGraph(kRootBlockIndex), block, sort_kind);

    VLOG(3) << "Graph to program need convert " << graph.SubGraphsSize()
            << " sub graph";
    for (size_t idx = 0; idx < graph.SubGraphsSize(); ++idx) {
      // avoid kRootBlockIndex not 0
      if (idx == kRootBlockIndex) continue;

      block = program_pb.add_blocks();
      block->set_idx(idx);
575
      block->set_parent_idx(kRootBlockIndex);
576 577 578 579 580 581 582 583 584
      GraphToBlock(*graph.GetSubGraph(idx), block, sort_kind);
    }
  } else {
    GraphToBlock(graph, block, sort_kind);
  }

  program->CopyFrom(program_pb);
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static std::vector<std::vector<ir::Node::Dep>> GetOpDependencies(
    const BlockDesc &block, const std::unordered_set<ir::Node *> &nodes) {
  auto block_ops = block.AllOps();
  size_t op_num = block_ops.size();
  std::unordered_map<const ir::Node *, std::unordered_set<const ir::Node *>>
      preceding_ops(op_num);
  std::unordered_map<const ir::Node *, size_t> preceding_deps(op_num);
  std::unordered_map<const ir::Node *, std::unordered_set<const ir::Node *>>
      pending_ops(op_num);

  std::queue<const ir::Node *> ready_ops;
  for (const auto *node : nodes) {
    if (!node->IsOp()) continue;

    auto &tmp_preceding_ops = preceding_ops[node];
    for (const auto *in_var : node->inputs) {
      for (const auto *in_op : in_var->inputs) {
        tmp_preceding_ops.insert(in_op);
      }
    }
    if (tmp_preceding_ops.empty()) {
      ready_ops.push(node);
    }
    preceding_deps[node] = tmp_preceding_ops.size();

    auto &tmp_pending_ops = pending_ops[node];
    for (const auto *out_var : node->outputs) {
      for (const auto *out_op : out_var->outputs) {
        tmp_pending_ops.insert(out_op);
      }
    }
  }

  std::unordered_map<const ir::Node *, std::unordered_set<const ir::Node *>>
      all_preceding_ops;
  while (!ready_ops.empty()) {
    const auto *cur_op = ready_ops.front();
    ready_ops.pop();

    auto &all_preceding_ops_of_cur_op = all_preceding_ops[cur_op];
    for (const auto *preceding_op : preceding_ops.at(cur_op)) {
      all_preceding_ops_of_cur_op.insert(preceding_op);
      auto &prev_preceding_ops = all_preceding_ops[preceding_op];
      all_preceding_ops_of_cur_op.insert(prev_preceding_ops.begin(),
                                         prev_preceding_ops.end());
    }

    for (const auto *pending_op : pending_ops.at(cur_op)) {
      if (--preceding_deps.at(pending_op) == 0) {
        ready_ops.push(pending_op);
      }
    }
  }

  std::unordered_map<uint64_t, size_t> op_id_to_idx(op_num);
  for (const auto *op_desc : block_ops) {
    size_t op_idx = op_id_to_idx.size();
    PADDLE_ENFORCE_EQ(
S
sneaxiy 已提交
643
        op_id_to_idx.emplace(op_desc->OriginalId(), op_idx).second, true,
644
        platform::errors::InvalidArgument(
S
sneaxiy 已提交
645
            "There should not be duplicate op id: %d", op_desc->OriginalId()));
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
  }

  std::vector<std::vector<ir::Node::Dep>> dep_matrix(op_num);
  for (size_t i = 0; i < op_num; ++i) {
    dep_matrix[i].resize(op_num, ir::Node::Dep::kNoDep);
    dep_matrix[i][i] = ir::Node::Dep::kSame;
  }

  auto get_op_idx_by_id = [&op_id_to_idx](uint64_t op_id) {
    auto iter = op_id_to_idx.find(op_id);
    PADDLE_ENFORCE_NE(iter, op_id_to_idx.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find OpDesc with id %d", op_id));
    return iter->second;
  };

  for (const auto &pair : all_preceding_ops) {
    const auto *cur_op_node = pair.first;
S
sneaxiy 已提交
664
    size_t op_idx_1 = get_op_idx_by_id(cur_op_node->Op()->OriginalId());
665
    for (const auto *preceding_op_node : pair.second) {
S
sneaxiy 已提交
666
      size_t op_idx_2 = get_op_idx_by_id(preceding_op_node->Op()->OriginalId());
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
      dep_matrix[op_idx_1][op_idx_2] = ir::Node::Dep::kAfter;
      dep_matrix[op_idx_2][op_idx_1] = ir::Node::Dep::kBefore;
    }
  }
  return dep_matrix;
}

std::vector<std::vector<std::vector<ir::Node::Dep>>> GetOpDependencies(
    const ProgramDesc &program) {
  ir::Graph graph(program);
  size_t block_num = program.Size();
  std::vector<std::vector<std::vector<ir::Node::Dep>>> deps;
  deps.reserve(block_num);
  for (size_t i = 0; i < block_num; ++i) {
    deps.emplace_back(
        GetOpDependencies(program.Block(i), graph.GetSubGraph(i)->Nodes()));
  }
  return deps;
}

X
better  
Xin Pan 已提交
687 688 689
}  // namespace ir
}  // namespace framework
}  // namespace paddle