test_dataset.py 31.0 KB
Newer Older
X
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xjqbest 已提交
14
"""
X
xjqbest 已提交
15 16
TestCases for Dataset,
including create, config, run, etc.
X
xjqbest 已提交
17
"""
X
xjqbest 已提交
18 19 20

from __future__ import print_function
import paddle.fluid as fluid
21
import paddle.compat as cpt
22
import paddle.fluid.core as core
X
xjqbest 已提交
23 24 25 26 27 28 29
import numpy as np
import os
import shutil
import unittest


class TestDataset(unittest.TestCase):
X
xjqbest 已提交
30
    """  TestCases for Dataset. """
31

Z
Zeng Jinle 已提交
32 33 34 35 36
    def setUp(self):
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

X
xjqbest 已提交
37
    def test_dataset_create(self):
X
xjqbest 已提交
38
        """ Testcase for dataset create. """
X
xjqbest 已提交
39 40 41 42 43 44 45 46 47 48
        try:
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        except:
            self.assertTrue(False)

        try:
            dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
        except:
            self.assertTrue(False)

49 50 51 52 53 54
        try:
            dataset = fluid.DatasetFactory().create_dataset(
                "FileInstantDataset")
        except:
            self.assertTrue(False)

X
xjqbest 已提交
55 56 57 58 59 60
        try:
            dataset = fluid.DatasetFactory().create_dataset("MyOwnDataset")
            self.assertTrue(False)
        except:
            self.assertTrue(True)

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    def test_config(self):
        """
        Testcase for python config.
        """
        dataset = fluid.InMemoryDataset()
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
        self.assertTrue(dataset.parse_ins_id)
        self.assertTrue(dataset.parse_content)

    def test_run_with_dump(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_run_with_dump_a.txt", "w") as f:
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_run_with_dump_b.txt", "w") as f:
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist(
            ["test_run_with_dump_a.txt", "test_run_with_dump_b.txt"])
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.set_fea_eval(10000, True)
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        os.remove("./test_run_with_dump_a.txt")
        os.remove("./test_run_with_dump_b.txt")

X
xjqbest 已提交
120
    def test_dataset_config(self):
X
xjqbest 已提交
121
        """ Testcase for dataset configuration. """
X
xjqbest 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        dataset = fluid.core.Dataset("MultiSlotDataset")
        dataset.set_thread_num(12)
        dataset.set_filelist(["a.txt", "b.txt", "c.txt"])
        dataset.set_trainer_num(4)
        dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")

        thread_num = dataset.get_thread_num()
        self.assertEqual(thread_num, 12)

        filelist = dataset.get_filelist()
        self.assertEqual(len(filelist), 3)
        self.assertEqual(filelist[0], "a.txt")
        self.assertEqual(filelist[1], "b.txt")
        self.assertEqual(filelist[2], "c.txt")

        trainer_num = dataset.get_trainer_num()
        self.assertEqual(trainer_num, 4)

        name, ugi = dataset.get_hdfs_config()
        self.assertEqual(name, "my_fs_name")
        self.assertEqual(ugi, "my_fs_ugi")

    def test_in_memory_dataset_run(self):
X
xjqbest 已提交
145
        """
X
xjqbest 已提交
146
        Testcase for InMemoryDataset from create to run.
X
xjqbest 已提交
147 148
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
149 150 151 152
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
153
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
154 155 156 157 158 159
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

160
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
161 162
        slots_vars = []
        for slot in slots:
163 164
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
165 166 167 168 169
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
170 171 172 173
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
X
xjqbest 已提交
174 175 176
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
177 178
        dataset.set_fea_eval(10000, True)
        dataset.slots_shuffle(["slot1"])
X
xjqbest 已提交
179 180 181 182
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
197

X
xjqbest 已提交
198 199
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")
X
xjqbest 已提交
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    def test_in_memory_dataset_masterpatch(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            for slot in slots[:2]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="int64", lod_level=1)
                slots_vars.append(var)
            for slot in slots[2:]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(1)
        dataset.set_parse_ins_id(True)
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch_a.txt",
            "test_in_memory_dataset_masterpatch_b.txt"
        ])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        dataset.set_merge_by_lineid(2)
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch_b.txt")

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    def test_in_memory_dataset_masterpatch1(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch1_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch1_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            var1 = fluid.layers.data(
                name="slot1", shape=[1], dtype="int64", lod_level=0)
            var2 = fluid.layers.data(
                name="slot2", shape=[1], dtype="int64", lod_level=0)
            var3 = fluid.layers.data(
                name="slot3", shape=[1], dtype="float32", lod_level=0)
            var4 = fluid.layers.data(
                name="slot4", shape=[1], dtype="float32", lod_level=0)
            slots_vars = [var1, var2, var3, var4]

        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(1)
        dataset.set_parse_ins_id(True)
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch1_a.txt",
            "test_in_memory_dataset_masterpatch1_b.txt"
        ])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        dataset.set_merge_by_lineid(2)
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch1_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch1_b.txt")

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    def test_in_memory_dataset_run_2(self):
        """
        Testcase for InMemoryDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=1)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=3)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=4)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

Z
Zeng Jinle 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
406

407 408
        dataset.set_merge_by_lineid(2)
        dataset.set_parse_ins_id(False)
409
        dataset.set_fleet_send_sleep_seconds(2)
410 411 412 413 414
        dataset.preload_into_memory()
        dataset.wait_preload_done()
        dataset.release_memory()
        dataset.preload_into_memory(1)
        dataset.wait_preload_done()
415 416 417 418 419 420
        dataset.dataset.merge_by_lineid()
        dataset.release_memory()
        dataset.set_merge_by_lineid(30)
        dataset.set_parse_ins_id(False)
        dataset.load_into_memory()
        dataset.dataset.merge_by_lineid()
421
        fleet_ptr = fluid.core.Fleet()
422
        fleet_ptr.set_client2client_config(1, 1, 1)
423
        fleet_ptr.get_cache_threshold(0)
424

425 426 427
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")

X
xjqbest 已提交
428
    def test_queue_dataset_run(self):
X
xjqbest 已提交
429
        """
X
xjqbest 已提交
430
        Testcase for QueueDataset from create to run.
X
xjqbest 已提交
431 432
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
433 434 435 436
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
437
        with open("test_queue_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
438 439 440 441 442 443
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

444
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
445 446
        slots_vars = []
        for slot in slots:
447 448
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
449 450 451 452 453
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
454 455
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
X
xjqbest 已提交
456 457 458 459 460
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
475

476 477 478 479 480 481 482 483 484 485 486 487 488
        dataset2 = fluid.DatasetFactory().create_dataset("QueueDataset")
        dataset2.set_use_var(slots_vars)
        dataset2.set_batch_size(32)
        dataset2.set_thread(3)
        dataset2.set_pipe_command("cat")
        dataset.set_filelist([])
        try:
            exe.train_from_dataset(fluid.default_main_program(), dataset2)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

X
xjqbest 已提交
489 490
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")
X
xjqbest 已提交
491

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    def test_queue_dataset_run_2(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

        dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)

        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
542 543 544 545

        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

X
xjqbest 已提交
546

Z
Zeng Jinle 已提交
547
class TestDatasetWithDataLoader(TestDataset):
X
xujiaqi01 已提交
548 549 550 551
    """
    Test Dataset With Data Loader class. TestCases.
    """

Z
Zeng Jinle 已提交
552
    def setUp(self):
X
xujiaqi01 已提交
553 554 555
        """
        Test Dataset With Data Loader, setUp.
        """
Z
Zeng Jinle 已提交
556 557 558 559 560
        self.use_data_loader = True
        self.epoch_num = 10
        self.drop_last = False


561
class TestDatasetWithFetchHandler(unittest.TestCase):
X
xujiaqi01 已提交
562 563 564 565
    """
    Test Dataset With Fetch Handler. TestCases.
    """

566
    def net(self):
X
xujiaqi01 已提交
567 568 569
        """
        Test Dataset With Fetch Handler. TestCases.
        """
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        poolings = []
        for slot in slots:
            data = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            var = fluid.layers.cast(x=data, dtype='float32')
            pool = fluid.layers.sequence_pool(input=var, pool_type='AVERAGE')

            slots_vars.append(data)
            poolings.append(pool)

        concated = fluid.layers.concat(poolings, axis=1)
        fc = fluid.layers.fc(input=concated, act='tanh', size=32)
        return slots_vars, fc

    def get_dataset(self, inputs, files):
X
xujiaqi01 已提交
587 588 589 590 591 592 593
        """
        Test Dataset With Fetch Handler. TestCases.

        Args:
            inputs(list): inputs of get_dataset
            files(list): files of  get_dataset
        """
594 595 596 597 598 599 600 601 602
        dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist(files)
        dataset.set_pipe_command("cat")
        dataset.set_use_var(inputs)
        return dataset

    def setUp(self):
X
xujiaqi01 已提交
603 604 605
        """
        Test Dataset With Fetch Handler. TestCases.
        """
606 607 608 609 610 611 612 613 614 615 616 617 618
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

    def tearDown(self):
X
xujiaqi01 已提交
619 620 621
        """
        Test Dataset With Fetch Handler. TestCases.
        """
622 623 624 625
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

    def test_dataset_none(self):
X
xujiaqi01 已提交
626 627 628
        """
        Test Dataset With Fetch Handler. TestCases.
        """
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        # test dataset->None
        try:
            exe.train_from_dataset(fluid.default_main_program(), None)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

    def test_infer_from_dataset(self):
X
xujiaqi01 已提交
648 649 650
        """
        Test Dataset With Fetch Handler. TestCases.
        """
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        try:
            exe.infer_from_dataset(fluid.default_main_program(), dataset)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

    def test_fetch_handler(self):
X
xujiaqi01 已提交
666 667 668
        """
        Test Dataset With Fetch Handler. TestCases.
        """
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        fh = fluid.executor.FetchHandler(out.name)
        fh.help()

        try:
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_handler=fh)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)


X
xujiaqi01 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
class TestDataset2(unittest.TestCase):
    """  TestCases for Dataset. """

    def setUp(self):
        """  TestCases for Dataset. """
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

    def test_dataset_fleet(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset2_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
736
                fleet.init()
X
xujiaqi01 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(adam)
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_batch_size(32)
            dataset.set_thread(3)
            dataset.set_filelist([
                "test_in_memory_dataset2_run_a.txt",
                "test_in_memory_dataset2_run_b.txt"
            ])
            dataset.set_pipe_command("cat")
            dataset.set_use_var(slots_vars)
            dataset.load_into_memory()
            fleet._opt_info = None
            fleet._fleet_ptr = None

        os.remove("./test_in_memory_dataset2_run_a.txt")
        os.remove("./test_in_memory_dataset2_run_b.txt")

    def test_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset2_run2_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run2_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
798
                fleet.init()
X
xujiaqi01 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx"
                    })
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_batch_size(32)
            dataset.set_thread(3)
            dataset.set_filelist([
                "test_in_memory_dataset2_run2_a.txt",
                "test_in_memory_dataset2_run2_b.txt"
            ])
            dataset.set_pipe_command("cat")
            dataset.set_use_var(slots_vars)
            dataset.load_into_memory()
827 828 829 830
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
831 832 833 834 835 836 837
            fleet._opt_info = None
            fleet._fleet_ptr = None

        os.remove("./test_in_memory_dataset2_run2_a.txt")
        os.remove("./test_in_memory_dataset2_run2_b.txt")


X
xjqbest 已提交
838
if __name__ == '__main__':
X
xjqbest 已提交
839
    unittest.main()