test_MaxPoolingWithMaskOutput.cpp 3.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <string>
#include <vector>

#include "LayerGradUtil.h"
#include "paddle/math/MathUtils.h"
#include "paddle/testing/TestUtil.h"

using namespace paddle;

void setPoolConfig(TestConfig* config,
                   PoolConfig* pool,
                   const string& poolType) {
  (*config).biasSize = 0;
  (*config).layerConfig.set_type("pool");
  (*config).layerConfig.set_num_filters(1);

  int kw = 3, kh = 3;
  int pw = 0, ph = 0;
  int sw = 2, sh = 2;
  pool->set_pool_type(poolType);
  pool->set_channels(1);
  pool->set_size_x(kw);
  pool->set_size_y(kh);
  pool->set_start(0);
  pool->set_padding(pw);
  pool->set_padding_y(ph);
  pool->set_stride(sw);
  pool->set_stride_y(sh);

  int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
  int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
  pool->set_output_x(ow);
  pool->set_output_y(oh);
}

void doOneMaxPoolingWithMaskOutputTest(MatrixPtr& inputMat,
                                       const string& poolType,
                                       bool use_gpu,
                                       MatrixPtr& maskMat) {
  TestConfig config;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 25, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();

  pool->set_img_size(5);
  pool->set_img_size_y(5);
  setPoolConfig(&config, pool, poolType);
  config.layerConfig.set_size(pool->output_x() * pool->output_y() *
                              pool->channels());

  config.layerConfig.set_name("MaxPoolWithMask");

  std::vector<DataLayerPtr> dataLayers;
  LayerMap layerMap;
  vector<Argument> datas;
71

X
xzl 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  initDataLayer(config,
                &dataLayers,
                &datas,
                &layerMap,
                "MaxPoolWithMask",
                1,
                false,
                use_gpu);

  dataLayers[0]->getOutputValue()->copyFrom(*inputMat);

  FLAGS_use_gpu = use_gpu;
  std::vector<ParameterPtr> parameters;
  LayerPtr maxPoolingWithMaskOutputLayer;
  initTestLayer(config, &layerMap, &parameters, &maxPoolingWithMaskOutputLayer);
  maxPoolingWithMaskOutputLayer->forward(PASS_GC);
88

X
xzl 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  checkMatrixEqual(maxPoolingWithMaskOutputLayer->getOutput("mask").value,
                   maskMat);
}

TEST(Layer, maxPoolingWithMaskOutputLayerFwd) {
  bool useGpu = false;
  MatrixPtr inputMat;
  MatrixPtr maskMat;
  real inputData[] = {0.1, 0.1, 0.5, 0.5, 1.1, 0.2, 0.2, 0.6, 0.1,
                      0.1, 0.3, 0.3, 0.7, 0.1, 0.1, 0.4, 0.4, 0.8,
                      0.8, 0.1, 1.0, 2.0, 3.0, 0.0, 9.0};
  real maskData[] = {12, 4, 22, 24};

  inputMat = Matrix::create(1, 25, false, useGpu);
  maskMat = Matrix::create(1, 4, false, useGpu);
  inputMat->setData(inputData);
  maskMat->setData(maskData);
  doOneMaxPoolingWithMaskOutputTest(
      inputMat, "max-pool-with-mask", useGpu, maskMat);
X
xzl 已提交
108 109 110 111 112 113 114 115 116
#ifdef PADDLE_WITH_CUDA
  useGpu = true;
  inputMat = Matrix::create(1, 25, false, useGpu);
  maskMat = Matrix::create(1, 4, false, useGpu);
  inputMat->copyFrom(inputData, 25);
  maskMat->copyFrom(maskData, 4);
  doOneMaxPoolingWithMaskOutputTest(
      inputMat, "max-pool-with-mask", useGpu, maskMat);
#endif
X
xzl 已提交
117
}