ConvBaseOperator.cpp 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ConvBaseOperator.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"

namespace paddle {

/**
 * @brief ConvBaseOperator takes two inputs to perform the convolution.
 * The first input is the image, and the second input is the convolution kernel.
 * The height of data for two inputs are the same. Each data of the first input
 * is convolved with each data of the second input indepedently.
 *
 * The config file api is conv_operator.
 */

ConvBaseOperator::ConvBaseOperator(const OperatorConfig &config, bool useGpu)
    : Operator(config, useGpu) {
  CHECK(useGpu);
  CHECK_EQ(config_.input_indices_size(), 2L);

  caffeMode_ = true;
  getConvParams();
  computeConvSizes();

  // initialize all to default algorithms
  fwdAlgo_ = 0;
  bwdFilterAlgo_ = 0;
  bwdDataAlgo_ = 0;
  fwdLimitBytes_ = 0;
  bwdDataLimitBytes_ = 0;
  bwdFilterLimitBytes_ = 0;
  workSpaceInBytes_ = 0;
  workSpace_ = nullptr;

  isSelectAlgo_ = false;
}

W
wangyang59 已提交
52 53 54 55 56 57 58 59 60 61
void ConvBaseOperator::allocConvWorkSpace() {
  hl_conv_workspace(imageDesc_,
                    outputDesc_,
                    filterDesc_,
                    convDesc_,
                    &fwdAlgo_,
                    &fwdLimitBytes_,
                    &bwdDataAlgo_,
                    &bwdDataLimitBytes_,
                    &bwdFilterAlgo_,
62 63
                    &bwdFilterLimitBytes_,
                    /*useDilation*/ false);
W
wangyang59 已提交
64 65 66 67 68

  size_t maxWorkSpace = 0;
  maxWorkSpace = std::max(fwdLimitBytes_, bwdDataLimitBytes_);
  maxWorkSpace = std::max(maxWorkSpace, bwdFilterLimitBytes_);

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  if (maxWorkSpace > workSpaceInBytes_) {
    if (workSpaceInBytes_ != 0) {
      hl_free_mem_device(workSpace_);
    }
    // total amount of storage needed
    workSpace_ = hl_malloc_device(maxWorkSpace);
    workSpaceInBytes_ = maxWorkSpace;
  }
}

void ConvBaseOperator::computeConvSizes() {
  hl_create_filter_descriptor(
      &filterDesc_, channels_, numFilters_, filterSizeY_, filterSize_);
  hl_create_tensor_descriptor(&imageDesc_);
  hl_create_tensor_descriptor(&outputDesc_);
  hl_create_convolution_descriptor(&convDesc_,
                                   imageDesc_,
                                   filterDesc_,
                                   paddingY_,
                                   padding_,
                                   strideY_,
                                   stride_);
}

void ConvBaseOperator::reshapeImageDescriptors() {
  hl_tensor_reshape(imageDesc_,
                    1,
                    channels_,
                    imageH_,
                    imageW_,
                    channels_ * imageH_ * imageW_,
                    imageH_ * imageW_,
                    imageW_,
                    1);
  hl_tensor_reshape(outputDesc_,
                    1,
                    numFilters_,
                    outputH_,
                    outputW_,
                    numFilters_ * outputH_ * outputW_,
                    outputH_ * outputW_,
                    outputW_,
                    1);
  hl_reset_convolution_descriptor(convDesc_,
                                  imageDesc_,
                                  filterDesc_,
                                  paddingY_,
                                  padding_,
                                  strideY_,
                                  stride_);
}

void ConvBaseOperator::getConvParams() {
  configNumFilters_ = config_.num_filters();
  const ConvConfig &conf = config_.conv_conf();
  padding_ = conf.padding();
  stride_ = conf.stride();
  filterSize_ = conf.filter_size();
  paddingY_ = conf.padding_y();
  strideY_ = conf.stride_y();
  filterSizeY_ = conf.filter_size_y();
  filterPixels_ = filterSize_ * filterSizeY_;
  configChannels_ = conf.channels();
  imgSize_ = conf.img_size();
  imgSizeY_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
  imgPixels_ = imgSize_ * imgSizeY_;
  CHECK_EQ(conf.groups(), 1U);
  filterChannels_ = conf.filter_channels();
  outputX_ = conf.output_x();
  outputY_ = conf.has_output_y() ? conf.output_y() : conf.output_x();
  outputs_ = outputX_ * outputX_;

  isDeconv_ = (config_.type() == "conv") ? false : true;
  if (isDeconv_) {
    channels_ = configNumFilters_;
    numFilters_ = configChannels_;
  } else {
    channels_ = configChannels_;
    numFilters_ = configNumFilters_;
  }
}

}  // namespace paddle