math_function.cu 5.9 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
namespace math {

template <>
Q
qijun 已提交
21 22 23 24 25 26
void gemm<platform::GPUPlace, float>(const CBLAS_TRANSPOSE transA,
                                     const CBLAS_TRANSPOSE transB, const int M,
                                     const int N, const int K,
                                     const float alpha, const float* A,
                                     const float* B, const float beta, float* C,
                                     platform::DeviceContext* context) {
Q
qijun 已提交
27 28
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
29 30
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
31
  cublasOperation_t cuTransA =
Q
qijun 已提交
32
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
33
  cublasOperation_t cuTransB =
Q
qijun 已提交
34
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
35

Q
qijun 已提交
36
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
Q
qijun 已提交
37
      reinterpret_cast<platform::CUDADeviceContext*>(context)->cublas_handle(),
Q
qijun 已提交
38
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
39 40 41
}

template <>
Q
qijun 已提交
42 43 44 45 46 47 48
void gemm<platform::GPUPlace, double>(const CBLAS_TRANSPOSE transA,
                                      const CBLAS_TRANSPOSE transB, const int M,
                                      const int N, const int K,
                                      const double alpha, const double* A,
                                      const double* B, const double beta,
                                      double* C,
                                      platform::DeviceContext* context) {
Q
qijun 已提交
49 50
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
51 52
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
53
  cublasOperation_t cuTransA =
Q
qijun 已提交
54
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
55
  cublasOperation_t cuTransB =
Q
qijun 已提交
56
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
57
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
Q
qijun 已提交
58
      reinterpret_cast<platform::CUDADeviceContext*>(context)->cublas_handle(),
Q
qijun 已提交
59
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
60 61
}

Q
qijun 已提交
62
template <>
Q
qijun 已提交
63 64 65 66 67
void matmul<platform::GPUPlace, float>(const framework::Tensor& in1, bool in1_T,
                                       const framework::Tensor& in2, bool in2_T,
                                       float alpha, framework::Tensor* out,
                                       float beta,
                                       platform::DeviceContext* context) {
Q
qijun 已提交
68 69 70 71
  auto in1_dim = in1.dims();
  auto in2_dim = in2.dims();
  auto out_dim = out->dims();
  PADDLE_ENFORCE(
Q
qijun 已提交
72 73
      in1_dim.size() == 2 && in2_dim.size() == 2 && out_dim.size() == 2,
      "The input and output of matmul be matrix");
Q
qijun 已提交
74 75 76 77 78 79 80 81 82
  if (!in1_T && !in2_T) {
    PADDLE_ENFORCE(in1_dim[1] == in2_dim[0]);
  } else if (in1_T && !in2_T) {
    PADDLE_ENFORCE(in1_dim[0] == in2_dim[0]);
  } else if (!in1_T && in2_T) {
    PADDLE_ENFORCE(in1_dim[1] == in2_dim[0]);
  } else {
    PADDLE_ENFORCE(in1_dim[0] == in2_dim[1]);
  }
Q
qijun 已提交
83

Q
qijun 已提交
84 85 86 87
  PADDLE_ENFORCE(platform::is_gpu_place(in1.place()) &&
                     platform::is_gpu_place(in2.place()) &&
                     platform::is_gpu_place(out->place()),
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
88

Q
qijun 已提交
89
  int M = out_dim[0];
Q
qijun 已提交
90 91 92
  int N = out_dim[1];
  int K = in1_dim[1];

Q
qijun 已提交
93
  CBLAS_TRANSPOSE in1_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
94
  CBLAS_TRANSPOSE in2_Trans = (in2_T == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
95

Q
qijun 已提交
96
  gemm<platform::GPUPlace, float>(in1_Trans, in2_Trans, M, N, K, alpha,
Q
qijun 已提交
97 98
                                  in1.data<float>(), in2.data<float>(), beta,
                                  out->data<float>(), context);
Q
qijun 已提交
99 100 101
}

template <>
Q
qijun 已提交
102 103 104 105 106 107
void matmul<platform::GPUPlace, double>(const framework::Tensor& in1,
                                        bool in1_T,
                                        const framework::Tensor& in2,
                                        bool in2_T, float alpha,
                                        framework::Tensor* out, float beta,
                                        platform::DeviceContext* context) {
Q
qijun 已提交
108 109 110 111
  auto in1_dim = in1.dims();
  auto in2_dim = in2.dims();
  auto out_dim = out->dims();
  PADDLE_ENFORCE(
Q
qijun 已提交
112 113
      in1_dim.size() == 2 && in2_dim.size() == 2 && out_dim.size() == 2,
      "The input and output of matmul be matrix");
Q
qijun 已提交
114 115 116 117 118 119 120 121 122
  if (!in1_T && !in2_T) {
    PADDLE_ENFORCE(in1_dim[1] == in2_dim[0]);
  } else if (in1_T && !in2_T) {
    PADDLE_ENFORCE(in1_dim[0] == in2_dim[0]);
  } else if (!in1_T && in2_T) {
    PADDLE_ENFORCE(in1_dim[1] == in2_dim[0]);
  } else {
    PADDLE_ENFORCE(in1_dim[0] == in2_dim[1]);
  }
Q
qijun 已提交
123

Q
qijun 已提交
124 125 126 127
  PADDLE_ENFORCE(platform::is_gpu_place(in1.place()) &&
                     platform::is_gpu_place(in2.place()) &&
                     platform::is_gpu_place(out->place()),
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
128

Q
qijun 已提交
129 130 131 132
  int M = out_dim[0];
  int N = out_dim[1];
  int K = in1_dim[1];
  CBLAS_TRANSPOSE in1_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
133
  CBLAS_TRANSPOSE in2_Trans = (in2_T == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
134

Q
qijun 已提交
135
  gemm<platform::GPUPlace, double>(in1_Trans, in2_Trans, M, N, K, alpha,
Q
qijun 已提交
136 137
                                   in1.data<double>(), in2.data<double>(), beta,
                                   out->data<double>(), context);
Q
qijun 已提交
138
}
Q
qijun 已提交
139 140 141
}  // namespace math
}  // namespace operators
}  // namespace paddle