io.py 19.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from .. import core
T
typhoonzero 已提交
16
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program, Program
Y
Yu Yang 已提交
17
from ..unique_name import generate as unique_name
T
WIP  
typhoonzero 已提交
18 19
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
Y
Refine  
Yu Yang 已提交
20
from ..executor import global_scope
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22 23
__all__ = [
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file',
J
JiayiFeng 已提交
24
    'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer'
Y
Yu Yang 已提交
25
]
Y
Yu Yang 已提交
26 27 28 29 30 31 32 33 34 35


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
36
    **Data Layer**
Y
Yu Yang 已提交
37

K
kavyasrinet 已提交
38
    This function takes in the input and based on whether data has
C
caoying03 已提交
39
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
40
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
41
    following operators in the graph.
Y
Yu Yang 已提交
42 43 44 45

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
75
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
76 77 78 79 80
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
81 82
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
83
    return data_var
T
typhoonzero 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
    ListenAndServ class.

    ListenAndServ class is used to wrap listen_and_serv op to create a server
    which can receive variables from clients and run a block.
    """

Y
Yancey1989 已提交
115
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
116
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
117
        self.inputs = inputs
T
typhoonzero 已提交
118 119 120
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
121 122
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
123
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
137 138 139 140 141 142 143 144
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
145 146
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
147 148 149

        return params, grads

T
typhoonzero 已提交
150 151 152 153 154 155 156
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
157 158 159 160
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
T
typhoonzero 已提交
161
        empty_block = Program().global_block()
T
typhoonzero 已提交
162 163

        parent_block.append_op(
164
            type='listen_and_serv',
Y
Yancey1989 已提交
165
            inputs={"X": self.inputs},
T
typhoonzero 已提交
166 167 168 169
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
T
typhoonzero 已提交
170
                'OptimizeBlock': current_block,
171 172
                'PrefetchBlock': empty_block,
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
173
                'grad_to_block_id': [""]
T
typhoonzero 已提交
174 175 176
            })


T
typhoonzero 已提交
177
def Send(endpoints, send_vars, get_vars=None):
T
typhoonzero 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    """
    Send layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
193
    endpoints = list(set(epmap))
T
typhoonzero 已提交
194 195

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
196 197
    rpc_client_var = default_main_program().global_block().create_var(
        name="RPC_CLIENT_VAR", persistable=True, type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
198 199 200 201 202
    if not get_vars:
        get_vars = []
        for s in send_vars:
            v = helper.create_tmp_variable(dtype=s.dtype, stop_gradient=True)
            get_vars.append(v)
Y
Yancey1989 已提交
203

T
typhoonzero 已提交
204 205 206
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
207 208
        outputs={"Out": get_vars,
                 "RPCClient": rpc_client_var},
T
typhoonzero 已提交
209 210
        attrs={"endpoints": endpoints,
               "epmap": epmap})
T
typhoonzero 已提交
211
    return get_vars
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239


def Recv(endpoints, get_vars):
    """
    Recv layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
Yu Yang 已提交
240 241


Y
Refine  
Yu Yang 已提交
242 243 244 245 246 247 248 249 250 251
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
252 253
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
254 255 256
    return reader


Y
Yu Yang 已提交
257 258 259 260 261
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
262 263 264 265
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
282
    new_op = block.append_op(
F
fengjiayi 已提交
283 284 285
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
286
        attrs=op.all_attrs())
F
fengjiayi 已提交
287
    return new_op
Y
Yu Yang 已提交
288 289


F
fengjiayi 已提交
290 291 292 293 294
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
295
                       for_parallel=True):
F
fengjiayi 已提交
296 297 298 299 300 301 302 303 304 305 306
    """
    Open a RecordIO file

    This layer takes a RecordIO file to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from the given RecordIO file.

    Args:
       filename(str): The RecordIO file's name.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
307
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable via which we can get RecordIO file data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.io.open_recordio_file(
                                          filename='./data.recordio',
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0],
                                          dtypes=['float32', 'int64'])

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
324
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
325
    """
Y
Yu Yang 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
350 351
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
352 353 354 355 356

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

    if for_parallel:
J
JiayiFeng 已提交
357
        main_prog_var = parallel(reader=main_prog_var)
F
fengjiayi 已提交
358

F
fengjiayi 已提交
359
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
360 361


F
fengjiayi 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
    Instead of opening a file and reading data from it, this 
    Reader Variable generates float uniform random data by itself. 
    It can be used as a dummy reader to test a network without 
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.io.random_data_generator(
                                          low=0.0,
                                          high=1.0,
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0])

         # Via the reader, we can use 'read_file' layer to get data:
         image, label = fluid.layers.io.read_file(reader)
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    if for_parallel:
        main_prog_var = parallel(reader=main_prog_var)

    return monkey_patch_reader_methods(main_prog_var)


429 430 431 432 433
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
               thread_num,
F
fengjiayi 已提交
434 435
               buffer_size=None,
               pass_num=1,
F
fengjiayi 已提交
436
               for_parallel=True):
F
fengjiayi 已提交
437 438 439
    """
    Open files

F
fengjiayi 已提交
440 441 442
    This layer takes a list of files to read from and returns a Reader Variable. 
    Via the Reader Variable, we can get data from given files. All files must 
    have name suffixs to indicate their formats, e.g., '*.recordio'. 
F
fengjiayi 已提交
443 444 445 446 447 448 449 450

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
       thread_num(int): The maximal concurrent prefetch thread number.
       buffer_size(int): The size of prefetch buffer.
F
fengjiayi 已提交
451
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
452 453
       for_parallel(Bool): Set it as True if you are going to run 
            subsequent operators in parallel.
F
fengjiayi 已提交
454 455 456 457 458 459 460

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
461
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
462
                                                     './data2.recordio'],
F
fengjiayi 已提交
463 464 465 466 467
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
                                             dtypes=['float32', 'int64'],
                                             thread_num=2,
                                             buffer_size=2)
F
fengjiayi 已提交
468 469

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
470
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
471
    """
472 473
    if buffer_size is None:
        buffer_size = thread_num
F
fengjiayi 已提交
474 475
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
476 477 478 479 480 481 482 483
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
484
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
485
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
486
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
F
fengjiayi 已提交
487 488
    startup_blk.append_op(
        type='open_files',
F
fengjiayi 已提交
489
        outputs={'Out': [startup_reader]},
F
fengjiayi 已提交
490 491 492 493
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks,
F
fengjiayi 已提交
494
            'file_names': filenames,
495 496
            'thread_num': thread_num,
            'buffer_size': buffer_size
F
fengjiayi 已提交
497 498
        })

F
fengjiayi 已提交
499 500 501 502 503 504 505
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
506

F
fengjiayi 已提交
507
    if for_parallel:
J
JiayiFeng 已提交
508
        main_prog_reader = parallel(reader=main_prog_reader)
F
fengjiayi 已提交
509

F
fengjiayi 已提交
510 511 512
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
513
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
514 515 516
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
517
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
518 519 520 521 522
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
523 524 525 526
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
527 528


529 530
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
531 532 533 534 535 536 537 538 539 540 541 542
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    new_reader.persistable = True
    new_reader.stop_gradient = True
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
543
def shuffle(reader, buffer_size):
544 545
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
546 547


J
JiayiFeng 已提交
548 549 550 551 552
def batch(reader, batch_size):
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


553
def double_buffer(reader, place=None, name=None):
Y
Yu Yang 已提交
554 555 556
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
557 558
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
559 560


F
fengjiayi 已提交
561
def multi_pass(reader, pass_num):
562 563
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
564 565


J
JiayiFeng 已提交
566
def parallel(reader):
J
JiayiFeng 已提交
567 568
    return __create_shared_decorated_reader__('create_threaded_reader', reader,
                                              {})
F
fengjiayi 已提交
569 570


Y
Yu Yang 已提交
571 572 573 574 575
def read_file(file_obj):
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
Y
Yu Yang 已提交
576
        for _ in range(len(file_obj.desc.shapes()))
Y
Yu Yang 已提交
577 578 579 580 581 582 583
    ]
    helper.append_op(
        type='read', inputs={'Reader': [file_obj]}, outputs={'Out': out})
    if len(out) == 1:
        return out[0]
    else:
        return out