mul_op.cc 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <string>
17
#include <vector>
18 19 20 21

namespace paddle {
namespace operators {

22
using framework::OpKernelType;
D
dongzhihong 已提交
23 24
using framework::Tensor;

25
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
26
 public:
27 28 29
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
30 31 32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MulOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
37

Q
Qiao Longfei 已提交
38 39
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
40

M
minqiyang 已提交
41 42 43
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
44

45 46 47 48 49 50 51
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        "The input tensor X's rank of MulOp should be larger than "
        "x_num_col_dims.");
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        "The input tensor Y's rank of MulOp should be larger than "
X
Xin Pan 已提交
52 53
        "y_num_col_dims: %ld vs %ld",
        y_dims.size(), y_num_col_dims);
54

F
fengjiayi 已提交
55 56
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
57

58 59
    PADDLE_ENFORCE_EQ(x_mat_dims[1], y_mat_dims[0],
                      "First matrix's width must be equal with second matrix's "
60 61
                      "height. %s, %s",
                      x_mat_dims[1], y_mat_dims[0]);
Y
Yu Yang 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
75
    ctx->ShareLoD("X", /*->*/ "Out");
76 77 78
  }
};

D
dongzhihong 已提交
79
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
80
 public:
Y
Yu Yang 已提交
81
  void Make() override {
C
caoying03 已提交
82 83 84
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
F
WIP  
fengjiayi 已提交
85
    AddAttr<int>(
F
fengjiayi 已提交
86
        "x_num_col_dims",
C
caoying03 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
102
        )DOC")
F
WIP  
fengjiayi 已提交
103
        .SetDefault(1)
F
fengjiayi 已提交
104
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
105
    AddAttr<int>(
F
fengjiayi 已提交
106
        "y_num_col_dims",
C
caoying03 已提交
107 108 109 110
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
111
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
112
        )DOC")
F
WIP  
fengjiayi 已提交
113
        .SetDefault(1)
F
fengjiayi 已提交
114
        .EqualGreaterThan(1);
115
    AddComment(R"DOC(
C
caoying03 已提交
116
Mul Operator.
K
kexinzhao 已提交
117

C
caoying03 已提交
118
This operator is used to perform matrix multiplication for input $X$ and $Y$.
119

120 121
The equation is:

C
caoying03 已提交
122
$$Out = X * Y$$
123

C
caoying03 已提交
124 125
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
126

127 128 129 130
)DOC");
  }
};

C
chengduo 已提交
131 132 133 134 135 136 137 138
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

139
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
140 141 142
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

143
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
144 145 146 147 148 149 150
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
151

Q
Qiao Longfei 已提交
152 153 154 155
    auto x_mat_dims = framework::flatten_to_2d(
        x_dims, ctx->Attrs().Get<int>("x_num_col_dims"));
    auto y_mat_dims = framework::flatten_to_2d(
        y_dims, ctx->Attrs().Get<int>("y_num_col_dims"));
156

Q
Qiao Longfei 已提交
157 158 159 160 161 162 163 164 165
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
166 167 168
  }
};

S
sneaxiy 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
class MulOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad");
    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    retv->SetAttrMap(Attrs());
    return retv;
  }
};

187 188 189
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
190
namespace ops = paddle::operators;
C
chengduo 已提交
191 192
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
                  ops::MulOpGradMaker);
193
REGISTER_OPERATOR(mul_grad, ops::MulGradOp);
Q
QI JUN 已提交
194
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
195 196
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
197
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
198 199
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);