test_dist_tree_index.py 6.1 KB
Newer Older
1
123malin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import os
import tempfile
1
123malin 已提交
17 18 19
import unittest
from paddle.dataset.common import download, DATA_HOME
from paddle.distributed.fleet.dataset import TreeIndex
W
wangzhen38 已提交
20 21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle
23

W
wangzhen38 已提交
24 25 26 27
paddle.enable_static()


def create_feeds():
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    user_input = fluid.layers.data(name="item_id",
                                   shape=[1],
                                   dtype="int64",
                                   lod_level=1)

    item = fluid.layers.data(name="unit_id",
                             shape=[1],
                             dtype="int64",
                             lod_level=1)

    label = fluid.layers.data(name="label",
                              shape=[1],
                              dtype="int64",
                              lod_level=1)
    labels = fluid.layers.data(name="labels",
                               shape=[1],
                               dtype="int64",
                               lod_level=1)
W
wangzhen38 已提交
46 47 48

    feed_list = [user_input, item, label, labels]
    return feed_list
1
123malin 已提交
49 50 51


class TestTreeIndex(unittest.TestCase):
52

1
123malin 已提交
53 54
    def test_tree_index(self):
        path = download(
W
wangzhen38 已提交
55 56 57 58 59
            "https://paddlerec.bj.bcebos.com/tree-based/data/mini_tree.pb",
            "tree_index_unittest", "e2ba4561c2e9432b532df40546390efa")
        '''
        path = download(
            "https://paddlerec.bj.bcebos.com/tree-based/data/mini_tree.pb",
1
123malin 已提交
60
            "tree_index_unittest", "cadec20089f5a8a44d320e117d9f9f1a")
W
wangzhen38 已提交
61
        '''
1
123malin 已提交
62 63 64
        tree = TreeIndex("demo", path)
        height = tree.height()
        branch = tree.branch()
W
wangzhen38 已提交
65
        self.assertTrue(height == 5)
1
123malin 已提交
66
        self.assertTrue(branch == 2)
W
wangzhen38 已提交
67 68
        self.assertEqual(tree.total_node_nums(), 25)
        self.assertEqual(tree.emb_size(), 30)
1
123malin 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

        # get_layer_codes
        layer_node_ids = []
        layer_node_codes = []
        for i in range(tree.height()):
            layer_node_codes.append(tree.get_layer_codes(i))
            layer_node_ids.append(
                [node.id() for node in tree.get_nodes(layer_node_codes[-1])])

        all_leaf_ids = [node.id() for node in tree.get_all_leafs()]
        self.assertEqual(sum(all_leaf_ids), sum(layer_node_ids[-1]))

        # get_travel
        travel_codes = tree.get_travel_codes(all_leaf_ids[0])
        travel_ids = [node.id() for node in tree.get_nodes(travel_codes)]

        for i in range(height):
            self.assertIn(travel_ids[i], layer_node_ids[height - 1 - i])
            self.assertIn(travel_codes[i], layer_node_codes[height - 1 - i])

        # get_ancestor
        ancestor_codes = tree.get_ancestor_codes([all_leaf_ids[0]], height - 2)
        ancestor_ids = [node.id() for node in tree.get_nodes(ancestor_codes)]

        self.assertEqual(ancestor_ids[0], travel_ids[1])
        self.assertEqual(ancestor_codes[0], travel_codes[1])

        # get_pi_relation
        pi_relation = tree.get_pi_relation([all_leaf_ids[0]], height - 2)
        self.assertEqual(pi_relation[all_leaf_ids[0]], ancestor_codes[0])

        # get_travel_path
        travel_path_codes = tree.get_travel_path(travel_codes[0],
                                                 travel_codes[-1])
        travel_path_ids = [
            node.id() for node in tree.get_nodes(travel_path_codes)
        ]

        self.assertEquals(travel_path_ids + [travel_ids[-1]], travel_ids)
        self.assertEquals(travel_path_codes + [travel_codes[-1]], travel_codes)

        # get_children
        children_codes = tree.get_children_codes(travel_codes[1], height - 1)
        children_ids = [node.id() for node in tree.get_nodes(children_codes)]
        self.assertIn(all_leaf_ids[0], children_ids)


class TestIndexSampler(unittest.TestCase):
117

118 119 120 121 122 123
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1
123malin 已提交
124 125
    def test_layerwise_sampler(self):
        path = download(
W
wangzhen38 已提交
126 127 128 129 130
            "https://paddlerec.bj.bcebos.com/tree-based/data/mini_tree.pb",
            "tree_index_unittest", "e2ba4561c2e9432b532df40546390efa")

        tdm_layer_counts = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        #tree = TreeIndex("demo", path)
131 132
        file_name = os.path.join(self.temp_dir.name,
                                 "test_in_memory_dataset_tdm_sample_run.txt")
W
wangzhen38 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145
        with open(file_name, "w") as f:
            #data = "29 d 29 d 29 29 29 29 29 29 29 29 29 29 29 29\n"
            data = "1 1 1 15 15 15\n"
            data += "1 1 1 15 15 15\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(name=slot, shape=[1], dtype="int64")
            slots_vars.append(var)

        dataset = paddle.distributed.InMemoryDataset()
146 147 148 149
        dataset.init(batch_size=1,
                     pipe_command="cat",
                     download_cmd="cat",
                     use_var=slots_vars)
W
wangzhen38 已提交
150 151 152 153 154 155 156 157 158
        dataset.set_filelist([file_name])
        #dataset.update_settings(pipe_command="cat")
        #dataset._init_distributed_settings(
        #    parse_ins_id=True,
        #    parse_content=True,
        #    fea_eval=True,
        #    candidate_size=10000)

        dataset.load_into_memory()
159 160 161 162 163 164 165
        dataset.tdm_sample('demo',
                           tree_path=path,
                           tdm_layer_counts=tdm_layer_counts,
                           start_sample_layer=1,
                           with_hierachy=False,
                           seed=0,
                           id_slot=2)
W
wangzhen38 已提交
166
        self.assertTrue(dataset.get_shuffle_data_size() == 8)
1
123malin 已提交
167 168 169 170


if __name__ == '__main__':
    unittest.main()