gradient_checker.py 33.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
Jiawei Wang 已提交
14
"""This is the lib for gradient checker unittest."""
15 16 17 18

import six
import numpy as np
from itertools import product
19
import paddle
20 21 22 23

import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import _append_grad_suffix_, _as_list
24
from paddle.fluid.framework import _test_eager_guard
25 26 27 28
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


def _product(t):
    if isinstance(t, int):
        return t
    else:
        return np.product(t)


def dtype_to_np_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return np.float32
    elif dtype == core.VarDesc.VarType.FP64:
        return np.float64
    elif dtype == core.VarDesc.VarType.FP16:
        return np.float16
    else:
        raise ValueError("Not supported data type " + str(dtype))


def _get_item(t, i, np_dtype):
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        np_t = np_t.flatten()
        return np_t[i]
    elif np_dtype == np.float32:
        return t._get_float_element(i)
    elif np_dtype == np.float64:
        return t._get_double_element(i)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


def _set_item(t, i, e, np_dtype):
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        shape = np_t.shape
        np_t = np_t.flatten()
        np_t[i] = e
68
        np_t = np_t.reshape(shape)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        t.set(np_t, place)
    elif np_dtype == np.float32:
        t._set_float_element(i, e)
    elif np_dtype == np.float64:
        t._set_double_element(i, e)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


def set_var_in_scope(scope, place, name, value, recursive_seq_len=None):
    t = scope.var(name).get_tensor()
    t.set(value, place)
    if recursive_seq_len:
        t.set_recursive_sequence_lengths(recursive_seq_len)
    return t


Q
qingqing01 已提交
86 87 88 89
def var_to_np_array_in_scope(scope, place, name):
    return np.array(scope.var(name).get_tensor())


90 91 92
def make_jacobian(x, y_size, np_dtype):
    if isinstance(x, fluid.framework.Variable):
        return np.zeros((_product(x.shape), y_size), dtype=np_dtype)
93
    elif isinstance(x, Sequence):
94
        jacobians = list(
95 96
            filter(lambda t: t is not None,
                   (make_jacobian(item, y_size, np_dtype) for item in x)))
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        return jacobians
    else:
        None


def _compute_numerical_jacobian(program, x, y, place, scope, delta):
    """Computes the numeric Jacobian for dy/dx.

    Computes the numeric Jacobian by slightly perturbing the inputs and
    measuring the differences on the output.

    Args:
        program (Program): the network program.
        x (Variable): the input variables.
        y (list[Variable]): the output variables.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.
        delta: the amount of perturbation we give to the input

    Returns:
        A list of 2-D numpy array, the list length is len(y).
        Each 2-D numpy array represents the Jacobian for dy_i/dx.
        It has "x_size" rows and "y_size" columns
        where "x_size" is the number of elements in x and
        "y_size" is the number of elements in each y_i.
    """
    if not isinstance(x, fluid.framework.Variable):
        raise TypeError('x is not Variable')

    # To compute the jacobian, treat x and y as one-dimensional vectors.
    y = _as_list(y)
    exe = fluid.Executor(place)

    def run():
        y_res = exe.run(program, scope=scope, fetch_list=y)
        return [yi.flatten() for yi in y_res]

    x_name = x.name
    x_shape = x.shape
    x_size = _product(x_shape)
    x_t = scope.find_var(x_name).get_tensor()

    np_type = dtype_to_np_dtype(x.dtype)
    jacobian = [make_jacobian(x, _product(yi.shape), np_type) for yi in y]

    for i in six.moves.xrange(x_size):
        orig = _get_item(x_t, i, np_type)
        x_pos = orig + delta
        _set_item(x_t, i, x_pos, np_type)
        y_pos = run()

        x_neg = orig - delta
        _set_item(x_t, i, x_neg, np_type)
        y_neg = run()

        _set_item(x_t, i, orig, np_type)

        for j in six.moves.xrange(len(y)):
            jacobian[j][i, :] = (y_pos[j] - y_neg[j]) / delta / 2.

    return jacobian


def _compute_analytical_jacobian(program, x, y, place, scope):
    """Computes the analytical Jacobian for dy/dx.

    Args:
        program (Program): a Program with forward pass.
        x (Variable|list[Variable]): a variable or list of variable
        y (Variable): the target variable.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.

    Returns:
        A list of 2-D numpy array. The list length is len(x).
        Each 2-D numpy array represents the Jacobian for dy/dx_i.
        It has "xi_size" rows and "dy_size" columns
        where "x_size" is the number of elements in x_i and
        "dy_size" is the number of elements in y.
    """
    if not isinstance(y, fluid.framework.Variable):
        raise TypeError('y is not Variable')

    dy_name = _append_grad_suffix_(y.name)

    np_type = dtype_to_np_dtype(y.dtype)
    # create dy Variable in Program
184 185 186 187
    dy = program.global_block().create_var(name=dy_name,
                                           shape=y.shape,
                                           dtype=np_type,
                                           persistable=True)
188
    # append backward
189
    dx = fluid.gradients(y, x, dy)
190 191 192 193 194 195 196 197 198 199 200 201

    # init dy tensor in scope
    value = np.zeros(y.shape, dtype=np_type)
    dy_t = set_var_in_scope(scope, place, dy_name, value)

    exe = fluid.Executor(place)

    y_size = _product(y.shape)

    x = _as_list(x)
    jacobian = make_jacobian(x, y_size, np_type)

202 203 204 205 206
    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(dx) if dxi is not None]
    filted_idx, filted_dx = zip(*filted)

207 208 209
    for i in six.moves.xrange(y_size):
        _set_item(dy_t, i, 1, np_type)

210
        dx_res = exe.run(program, scope=scope, fetch_list=filted_dx)
211

212 213
        for j in six.moves.xrange(len(filted_dx)):
            dx_idx = filted_idx[j]
Q
qingqing01 已提交
214
            if dx_res[j] is not None:
215
                jacobian[dx_idx][:, i] = dx_res[j].flatten()
Q
qingqing01 已提交
216
            else:
217 218
                jacobian[dx_idx][:, i] = np.zeros(dx[dx_idx].shape,
                                                  dtype=np_type).flatten()
Q
qingqing01 已提交
219

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        _set_item(dy_t, i, 0, np_type)

    return jacobian


def grad_check(x,
               y,
               x_init=None,
               place=None,
               program=None,
               eps=1e-6,
               atol=1e-5,
               rtol=1e-3,
               raise_exception=True):
    """
    Check numerical and analytical gradients for dy/dx.
    Each Jacobian gradients is a 2-D array with shape [xi_size, yi_size].

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)
Q
qingqing01 已提交
262

263 264 265
    for v in x:
        v.stop_gradient = False
        v.persistable = True
266 267 268
    for u in y:
        u.stop_gradient = False
        u.persistable = True
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
            raise ValueError('len(x_init) (=%d) is not the same'
                             ' as len(x) (= %d)' % (len(x_init), len(x)))
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    # [x_idx, y_idx]
    numerical = [
        _compute_numerical_jacobian(program, xi, y, place, scope, eps)
        for xi in x
    ]

    # [y_idx, x_idx]
Q
qingqing01 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    analytical = []
    for yi in y:
        prog = program.clone()

        clone_x = []
        clone_y = None
        for b in prog.blocks:
            if b.has_var(yi.name):
                clone_y = b.var(yi.name)
                break
        for xi in x:
            for b in prog.blocks:
                if b.has_var(xi.name):
                    clone_x.append(b.var(xi.name))
                    break
        analytical.append(
            _compute_analytical_jacobian(prog, clone_x, clone_y, place, scope))
315

316 317
    for i, (x_idx, y_idx) in enumerate(
            product(*[range(len(x)), range(len(y))])):
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
        a = analytical[y_idx][x_idx]
        n = numerical[x_idx][y_idx]
        if not np.allclose(a, n, rtol, atol):
            msg = 'Jacobian mismatch for output %s ' \
                  'with respect to input %s on %s,\n' \
                  'numerical:%s\nanalytical:%s\n' \
                  % (y[y_idx].name, x[x_idx].name, str(place), n, a)
            return fail_test(msg)
    return True


def double_grad_check(x,
                      y,
                      x_init=None,
                      y_grads=None,
                      place=None,
                      program=None,
                      eps=1e-6,
                      atol=1e-5,
                      rtol=1e-3,
                      raise_exception=True):
    """
    Check gradients of gradients. This function will append backward to the
    program before second order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
365 366 367
    for u in y:
        u.stop_gradient = False
        u.persistable = True
368 369 370 371 372 373 374

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
Q
qingqing01 已提交
375
        y_grads_init = []
376 377 378
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
379 380 381 382
            dy = program.global_block().create_var(name=dyi_name,
                                                   shape=yi.shape,
                                                   dtype=np_type,
                                                   persistable=True)
383 384 385 386
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
Q
qingqing01 已提交
387
            y_grads_init.append(v)
388 389
    else:
        y_grads = _as_list(y_grads)
Q
qingqing01 已提交
390 391 392
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]
393 394

    # append first order grads
395
    target_grads = fluid.gradients(y, x, y_grads)
Q
qingqing01 已提交
396 397 398 399 400 401 402

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

403
    grad_check(x, target_grads, x_init, place, program, eps, atol, rtol)
404 405


406
# TODO(jiabin): We currently support only triple grad check here, extend this to support
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
# higher order differenciation later.


# check triple grad and two outputs of the triple Kernel
def triple_grad_check(x,
                      y,
                      x_init=None,
                      y_grads=None,
                      x_grads_grads=None,
                      place=None,
                      program=None,
                      eps=1e-6,
                      atol=1e-5,
                      rtol=1e-3,
                      raise_exception=True):
    """
    Check triple gradients. This function will append backward to the
    program before third order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        x_grads_grads (numpy.array|list[numpy.array]|None): the gradients with respect to your input.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
449 450 451
    for u in y:
        u.stop_gradient = False
        u.persistable = True
452 453 454 455 456 457 458 459 460 461 462

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
        y_grads_init = []
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
463 464 465 466
            dy = program.global_block().create_var(name=dyi_name,
                                                   shape=yi.shape,
                                                   dtype=np_type,
                                                   persistable=True)
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
            y_grads_init.append(v)
    else:
        y_grads = _as_list(y_grads)
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]

    # append first order grads
    target_grads = fluid.gradients(y, x, y_grads)

    if x_grads_grads is None:
        scope = fluid.executor.global_scope()
        x_grads_grads = []
        x_grads_grads_init = []
        for dxi in target_grads:
            ddxi_name = _append_grad_suffix_(dxi.name)
            np_type = dtype_to_np_dtype(dxi.dtype)
488 489 490 491
            ddx = program.global_block().create_var(name=ddxi_name,
                                                    shape=dxi.shape,
                                                    dtype=np_type,
                                                    persistable=True)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
            ddx.stop_gradient = False
            v = np.random.random(size=dxi.shape).astype(np_type)
            set_var_in_scope(scope, place, ddxi_name, v)
            x_grads_grads.append(ddx)
            x_grads_grads_init.append(v)
    else:
        x_grads_grads = _as_list(x_grads_grads)
        x_grads_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name)
            for v in x_grads_grads
        ]
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

507 508 509 510 511 512 513 514
    # append second order grads
    target_grads_grads = fluid.gradients(target_grads, x, x_grads_grads)

    # filter None in target_grads_grads for Dy/Dx may be None in kernel
    filted = [(i, dyi) for i, dyi in enumerate(target_grads_grads)
              if dyi is not None]
    filted_idx, filted_target_grads_grads = zip(*filted)

515 516 517 518
    x += x_grads_grads
    x_init += x_grads_grads_init

    # x <=> [x, dout, ddx]
519 520 521 522 523 524 525 526
    grad_check(x=x,
               y=filted_target_grads_grads,
               x_init=x_init,
               place=place,
               program=program,
               eps=eps,
               atol=atol,
               rtol=rtol)
527 528


529 530 531 532 533 534
def get_static_double_grad(x,
                           y,
                           x_init=None,
                           dy_init=None,
                           place=None,
                           program=None):
535 536 537 538 539 540 541 542 543
    """
    Get Double Grad result of static graph.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
544 545
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
546 547 548 549
    Returns:
        A list of numpy array that stores second derivative result calulated by static graph.
    """

550 551
    if program is None:
        program = fluid.default_main_program()
552 553 554 555 556 557
    scope = fluid.executor.global_scope()
    y_grads = []
    for i in six.moves.xrange(len(y)):
        yi = y[i]
        dyi_name = _append_grad_suffix_(yi.name)
        np_type = dtype_to_np_dtype(yi.dtype)
558 559 560 561
        dy = program.global_block().create_var(name=dyi_name,
                                               shape=yi.shape,
                                               dtype=np_type,
                                               persistable=True)
562 563 564 565 566 567 568 569 570 571 572
        dy.stop_gradient = False
        set_var_in_scope(scope, place, dyi_name, dy_init[i])
        y_grads.append(dy)

    # append first order grads
    dx = fluid.gradients(y, x, y_grads)

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init += dy_init
573 574 575 576

    # filter None in dx for DX/DY may be None in kernel
    filted_dx = [dxi for dxi in dx if dxi is not None]
    y = filted_dx
577 578 579 580 581 582 583 584

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)

    for v in x:
        v.stop_gradient = False
        v.persistable = True
585 586 587
    for u in y:
        u.stop_gradient = False
        u.persistable = True
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
            raise ValueError('len(x_init) (=%d) is not the same'
                             ' as len(x) (= %d)' % (len(x_init), len(x)))
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    dys = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        dy_name = _append_grad_suffix_(yi.name)
        # create dy Variable in Program
615 616 617 618
        dy = program.global_block().create_var(name=dy_name,
                                               shape=yi.shape,
                                               dtype=np_type,
                                               persistable=True)
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
        # init dy tensor in scope
        value = np.ones(yi.shape, dtype=np_type)
        dy_t = set_var_in_scope(scope, place, dy_name, value)
        dys.append(dy)

    # append second order backward
    ddx = fluid.gradients(y, x, dys)
    exe = fluid.Executor(place)

    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(ddx) if dxi is not None]
    filted_idx, filted_ddx = zip(*filted)
    ddx_res = exe.run(program, scope=scope, fetch_list=filted_ddx)

    return ddx_res


637 638 639
def get_eager_double_grad(func,
                          x_init=None,
                          dy_init=None,
640
                          place=None,
641
                          return_mid_result=False):
642 643 644 645 646 647 648
    """
    Get Double Grad result of dygraph.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
649
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
650
        return_mid_result (bool): A flag that controls the return content.
651
    Returns:
652
        If 'return_mid_result' set True.
653 654
        the second order derivative and the inputs of second order derivative's calculation
        will be returned for higher order derivative's calculation.
655
        If 'return_mid_result' set False.
656
        A list of numpy array that stores second derivative result calulated by dygraph.
657
    """
658 659 660 661
    if isinstance(place, fluid.CPUPlace):
        paddle.set_device("cpu")
    if isinstance(place, fluid.CUDAPlace):
        paddle.set_device("gpu")
662 663 664 665 666 667 668 669 670 671 672 673
    inputs = []
    dys = []
    for x in x_init:
        input_tensor = paddle.to_tensor(x)
        input_tensor.stop_gradient = False
        inputs.append(input_tensor)
    for dy in dy_init:
        dy_tensor = paddle.to_tensor(dy)
        dy_tensor.stop_gradient = False
        dys.append(dy_tensor)
    # calculate first derivative
    outputs = func(inputs)
674 675 676 677 678
    d_inputs = paddle.grad(outputs=outputs,
                           inputs=inputs,
                           grad_outputs=dys,
                           create_graph=True,
                           allow_unused=True)
679
    d_inputs = [d_input for d_input in d_inputs if d_input is not None]
680 681 682 683

    # calcluate second derivative
    inputs = inputs + dys
    ddys = []
684 685 686 687 688
    if return_mid_result:
        create_graph = True
    else:
        create_graph = False

689 690 691 692 693
    for d_input in d_inputs:
        d_input.stop_gradient = False
        ddy = paddle.ones(shape=d_input.shape, dtype=d_input.dtype)
        ddy.stop_gradient = False
        ddys.append(ddy)
694

695 696 697 698 699
    dd_inputs = paddle.grad(outputs=d_inputs,
                            inputs=inputs,
                            grad_outputs=ddys,
                            create_graph=create_graph,
                            allow_unused=True)
700

701
    if return_mid_result:
702 703
        return [dd_input for dd_input in dd_inputs
                if dd_input is not None], inputs + ddys
704
    else:
705 706 707
        return [
            dd_input.numpy() for dd_input in dd_inputs if dd_input is not None
        ]
708 709 710 711 712 713 714 715 716 717 718


def double_grad_check_for_dygraph(func,
                                  x,
                                  y,
                                  x_init=None,
                                  place=None,
                                  atol=1e-5,
                                  rtol=1e-3,
                                  raise_exception=True):
    """
719 720
    Check second order gradients of dygraph. This function will compare the
    second order gradients of dygraph and second order gradients of static graph
721
    to validate dygraph's correctness
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
746 747 748
    for u in y:
        u.stop_gradient = False
        u.persistable = True
749 750 751 752 753 754 755 756 757 758
    y_grads_init = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        v = np.random.random(size=yi.shape).astype(np_type)
        y_grads_init.append(v)

    x_init = _as_list(x_init)

    paddle.disable_static()
    with _test_eager_guard():
759 760
        eager_double_grad = get_eager_double_grad(func, x_init, y_grads_init,
                                                  place)
761 762 763 764 765
    paddle.enable_static()

    static_double_grad = get_static_double_grad(x, y, x_init, y_grads_init,
                                                place)

766 767 768 769 770
    if len(static_double_grad) != len(eager_double_grad):
        msg = "The output grad tensor's number of static graph is different with dygraph, " \
            "please check the python api unit test used."
        raise RuntimeError(msg)

771 772 773
    for i in six.moves.xrange(len(static_double_grad)):
        if not np.allclose(static_double_grad[i], eager_double_grad[i], rtol,
                           atol):
774 775
            msg = 'Check eager double result fail. Mismatch between static_graph double grad ' \
                'and eager double grad on %s, the output double grad tensor\'s index is : %d \n' \
776
                'static:%s\n eager:%s\n' \
777
                % (str(place), i, static_double_grad[i], eager_double_grad[i])
778
            return fail_test(msg)
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808


def get_static_triple_grad(x,
                           y,
                           x_init=None,
                           dy_init=None,
                           place=None,
                           program=None):
    """
    Get Triple Grad result of static graph.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
    Returns:
        A list of numpy array that stores third derivative result calulated by static graph.
    """
    if program is None:
        program = fluid.default_main_program()
    scope = fluid.executor.global_scope()
    y_grads = []
    for i in six.moves.xrange(len(y)):
        yi = y[i]
        dyi_name = _append_grad_suffix_(yi.name)
        np_type = dtype_to_np_dtype(yi.dtype)
809 810 811 812
        dy = program.global_block().create_var(name=dyi_name,
                                               shape=yi.shape,
                                               dtype=np_type,
                                               persistable=True)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
        dy.stop_gradient = False
        set_var_in_scope(scope, place, dyi_name, dy_init[i])
        y_grads.append(dy)

    # append first order grads
    dx = fluid.gradients(y, x, y_grads)

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init += dy_init
    y = dx

    x_grads_grads_init = []
    for dxi in dx:
        np_type = dtype_to_np_dtype(dxi.dtype)
        value = np.ones(dxi.shape, dtype=np_type)
        x_grads_grads_init.append(value)

832 833 834 835 836 837
    return get_static_double_grad(x,
                                  y,
                                  x_init,
                                  dy_init=x_grads_grads_init,
                                  place=place,
                                  program=program)
838 839 840 841 842


def get_eager_triple_grad(func,
                          x_init=None,
                          dy_init=None,
843
                          place=None,
844 845 846 847 848 849 850 851
                          return_mid_result=False):
    """
    Get triple Grad result of dygraph.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
852
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
853
        return_mid_result (list[Tensor], list[Tensor]): If set True, the
854 855 856
    Returns:
        A list of numpy array that stores second derivative result calulated by dygraph
    """
857 858 859 860 861
    dd_y, dd_x = get_eager_double_grad(func,
                                       x_init,
                                       dy_init,
                                       place,
                                       return_mid_result=True)
862 863 864 865 866 867 868 869

    # calcluate third derivative
    dddys = []
    for dd_yi in dd_y:
        dd_yi.stop_gradient = False
        dddy = paddle.ones(shape=dd_yi.shape, dtype=dd_yi.dtype)
        dddy.stop_gradient = False
        dddys.append(dddy)
870 871 872 873 874 875 876
    ddd_inputs = paddle.grad(outputs=dd_y,
                             inputs=dd_x,
                             grad_outputs=dddys,
                             allow_unused=True)
    return [
        ddd_input.numpy() for ddd_input in ddd_inputs if ddd_input is not None
    ]
877 878 879 880 881 882 883 884 885 886 887


def triple_grad_check_for_dygraph(func,
                                  x,
                                  y,
                                  x_init=None,
                                  place=None,
                                  atol=1e-5,
                                  rtol=1e-3,
                                  raise_exception=True):
    """
888 889
    Check third order gradients of dygraph. This function will compare the
    third order gradients of dygraph and third order gradients of static graph
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
    to validate dygraph's correctness

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
915 916 917
    for u in y:
        u.stop_gradient = False
        u.persistable = True
918 919 920 921 922 923 924 925 926 927
    y_grads_init = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        v = np.random.random(size=yi.shape).astype(np_type)
        y_grads_init.append(v)

    x_init = _as_list(x_init)

    paddle.disable_static()
    with _test_eager_guard():
928 929
        eager_triple_grad = get_eager_triple_grad(func, x_init, y_grads_init,
                                                  place)
930 931 932 933 934
    paddle.enable_static()

    static_triple_grad = get_static_triple_grad(x, y, x_init, y_grads_init,
                                                place)

935 936 937 938 939
    if len(static_triple_grad) != len(eager_triple_grad):
        msg = "The output grad tensor's number of static graph is different with dygraph, " \
            "please check the python api unit test used."
        raise RuntimeError(msg)

940 941 942
    for i in six.moves.xrange(len(static_triple_grad)):
        if not np.allclose(static_triple_grad[i], eager_triple_grad[i], rtol,
                           atol):
943 944
            msg = 'Check eager double result fail. Mismatch between static_graph double grad ' \
                'and eager double grad on %s, the output double grad tensor\'s index is : %d \n' \
945
                'static:%s\n eager:%s\n' \
946
                % (str(place), i, static_triple_grad[i], eager_triple_grad[i])
947
            return fail_test(msg)