dist_fleet_simnet_bow.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import time

import paddle
import paddle.fluid as fluid
import os
21
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
22

P
pangyoki 已提交
23 24
paddle.enable_static()

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
DTYPE = "int64"
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/simnet.train.1000'
DATA_MD5 = '24e49366eb0611c552667989de2f57d5'

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


43
def fake_simnet_reader():
44

45 46 47 48 49 50 51 52 53 54 55
    def reader():
        for _ in range(1000):
            q = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            pt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            nt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            yield [q, label, pt, nt]

    return reader


56 57 58 59
def get_acc(cos_q_nt, cos_q_pt, batch_size):
    cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
    cond = fluid.layers.cast(cond, dtype='float64')
    cond_3 = fluid.layers.reduce_sum(cond)
60 61 62 63 64 65
    acc = fluid.layers.elementwise_div(cond_3,
                                       fluid.layers.fill_constant(
                                           shape=[1],
                                           value=batch_size * 1.0,
                                           dtype='float64'),
                                       name="simnet_acc")
66 67 68 69 70
    return acc


def get_loss(cos_q_pt, cos_q_nt):
    loss_op1 = fluid.layers.elementwise_sub(
71 72 73 74
        fluid.layers.fill_constant_batch_size_like(input=cos_q_pt,
                                                   shape=[-1, 1],
                                                   value=margin,
                                                   dtype='float32'), cos_q_pt)
75 76
    loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
    loss_op3 = fluid.layers.elementwise_max(
77 78 79 80
        fluid.layers.fill_constant_batch_size_like(input=loss_op2,
                                                   shape=[-1, 1],
                                                   value=0.0,
                                                   dtype='float32'), loss_op2)
81
    avg_cost = paddle.mean(loss_op3)
82 83 84
    return avg_cost


85 86 87
def train_network(batch_size,
                  is_distributed=False,
                  is_sparse=False,
88 89
                  is_self_contained_lr=False,
                  is_pyreader=False):
90
    # query
91 92 93 94
    q = fluid.layers.data(name="query_ids",
                          shape=[1],
                          dtype="int64",
                          lod_level=1)
95 96 97
    # label data
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    # pt
98 99 100 101
    pt = fluid.layers.data(name="pos_title_ids",
                           shape=[1],
                           dtype="int64",
                           lod_level=1)
102
    # nt
103 104 105 106
    nt = fluid.layers.data(name="neg_title_ids",
                           shape=[1],
                           dtype="int64",
                           lod_level=1)
107 108 109 110 111

    datas = [q, label, pt, nt]

    reader = None
    if is_pyreader:
112 113 114 115
        reader = fluid.io.PyReader(feed_list=datas,
                                   capacity=64,
                                   iterable=False,
                                   use_double_buffer=False)
116

117 118
    # embedding
    q_emb = fluid.embedding(
119 120 121 122
        input=q,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
123
            initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
124
        is_sparse=is_sparse)
125 126
    q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
    # vsum
127 128
    q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
    q_ss = fluid.layers.softsign(q_sum)
129
    # fc layer after conv
130 131 132 133 134 135
    q_fc = fluid.layers.fc(
        input=q_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__q_fc__",
136 137
            learning_rate=base_lr),
    )
138

139 140
    # embedding
    pt_emb = fluid.embedding(
141 142 143 144 145 146
        input=pt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__emb__",
147
            learning_rate=emb_lr),
148
        is_sparse=is_sparse)
149 150
    pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
    # vsum
151 152
    pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
    pt_ss = fluid.layers.softsign(pt_sum)
153
    # fc layer
154 155 156 157
    pt_fc = fluid.layers.fc(
        input=pt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
158
            initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
159
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
160

161 162
    # embedding
    nt_emb = fluid.embedding(
163 164 165 166
        input=nt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
167
            initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
168
        is_sparse=is_sparse)
169 170
    nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
    # vsum
171 172
    nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
    nt_ss = fluid.layers.softsign(nt_sum)
173
    # fc layer
174 175 176 177
    nt_fc = fluid.layers.fc(
        input=nt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
178
            initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
179 180 181 182 183 184 185
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
    cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
    cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
    # loss
    avg_cost = get_loss(cos_q_pt, cos_q_nt)
    # acc
    acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
186 187 188 189 190 191 192 193 194 195 196
    return avg_cost, acc, cos_q_pt, reader


class TestDistSimnetBow2x2(FleetDistRunnerBase):
    """
    For test SimnetBow model, use Fleet api
    """

    def net(self, args, batch_size=4, lr=0.01):
        avg_cost, _, predict, self.reader = \
            train_network(batch_size=batch_size, is_distributed=False,
197
                          is_sparse=True, is_self_contained_lr=False, is_pyreader=(args.reader == "pyreader"))
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

    def do_pyreader_training(self, fleet):
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
222
        fleet.init_worker()
223 224 225 226 227 228 229 230 231 232 233 234
        batch_size = 4
        # reader
        train_reader = paddle.batch(fake_simnet_reader(), batch_size=batch_size)
        self.reader.decorate_sample_list_generator(train_reader)
        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
                    loss_val = exe.run(program=fluid.default_main_program(),
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
235 236
                    message = "TRAIN ---> pass: {} loss: {}\n".format(
                        epoch_id, loss_val)
237
                    fleet.util.print_on_rank(message, 0)
238 239 240 241 242 243 244

                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

    def do_dataset_training(self, fleet):
        pass
245 246 247 248


if __name__ == "__main__":
    runtime_main(TestDistSimnetBow2x2)