completion.py 48.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
from copy import deepcopy
17
import time
18 19 20 21

from paddle.fluid import core
from paddle.fluid import framework

22
from .utils import print_program_with_dist_attr
23
from .operators import find_best_compatible_distributed_operator_impl
24
from .dist_context import get_default_distributed_context, _node_id
25 26 27 28
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
29
from .process_mesh import ProcessMesh
30
from paddle.distributed.fleet.meta_optimizers.common import OpRole
31 32


33 34 35 36
def compute_compatible_process_mesh(process_mesh_list):
    """Compute the compatible process mesh given a list of process meshes."""
    if not process_mesh_list:
        return None
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def _compute_compatible_process_mesh_two(pm1, pm2):
        if pm1 is None:
            return True, pm2
        if pm2 is None:
            return True, pm1
        if pm1 == pm2:
            return True, pm1
        if pm1.processes == pm2.processes:
            if len(pm1.topology) >= len(pm2.topology):
                return True, pm1
            else:
                return True, pm2
        process_set1 = set(pm1.processes)
        process_set2 = set(pm2.processes)
        if process_set1.issubset(process_set2):
            return True, pm2
        if process_set2.issubset(process_set1):
            return True, pm1
        return False, None

    compatible_result = None
    for process_mesh in process_mesh_list:
        compatible, compatible_result = _compute_compatible_process_mesh_two(
            compatible_result, process_mesh)
        if not compatible:
            return None
    return copy.deepcopy(compatible_result)


def compute_compatible_dim_mapping(dim_mapping_list):
    """Compute the compatible dim mapping given a list of dim mapping."""
    if not dim_mapping_list:
        return None
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    def _compute_compatible_dim_mapping_two(dm1, dm2):
        if dm1 == -1:
            return True, dm2
        if dm2 == -1:
            return True, dm1
        if dm1 == dm2:
            return True, dm1
        return False, None

    compatible_result = -1
    for mapping in dim_mapping_list:
        compatible, compatible_result = _compute_compatible_dim_mapping_two(
            compatible_result, mapping)
        if not compatible:
            return None
    return compatible_result


def compute_compatible_dims_mapping(dims_mapping_list):
    """Compute the compatible dims mapping given a list of dims mapping.
       Each of dims mapping is also a list.
93
    """
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        if dims_mapping is None:
            return None
        if len(dims_mapping) != length:
            return None
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
            list(dim_mappings))
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


112 113 114 115 116 117 118 119 120 121 122 123 124 125
def merge_process_mesh_two(pm1, pm2):
    process_set1 = set()
    process_set2 = set()
    if pm1 is None and pm2 is None:
        return None
    if pm1 is not None:
        process_set1 = set(pm1.processes)
    if pm2 is not None:
        process_set2 = set(pm2.processes)
    merged_process_set = process_set1.union(process_set2)
    merged_process_mesh = ProcessMesh(list(merged_process_set))
    return merged_process_mesh


126 127 128 129 130 131 132 133 134 135 136
class Completer:
    def __init__(self, dist_context):
        assert dist_context is not None
        self._dist_context = dist_context

    def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True):
        changed = False
        if (not tensor_node.is_var()) or (tensor_node.var() is None):
            return False
        tensor_desc = tensor_node.var()
        # Skip reader tensor
137 138 139
        if tensor_desc.type() == core.VarDesc.VarType.READER \
            or tensor_desc.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            or tensor_desc.type == core.VarDesc.VarType.STEP_SCOPES:
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
            return False
        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
            tensor_node)
        assert tensor_dist_attr is not None
        if tensor_dist_attr.is_annotated("dims_mapping"):
            return False
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        if fwd:
            dims_mapping_list = []
            for pred_op_node in tensor_node.inputs:
                if pred_op_node.op() is not None:
                    if pred_op_node.op().type() == "create_py_reader" \
                        or pred_op_node.op().type() == "create_double_buffer_reader" \
                        or pred_op_node.op().type() == "read":
                        continue
                    op_dist_attr = self._dist_context.get_op_dist_attr_for_graph(
                        pred_op_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
                dims_mapping_list)
            if (compatible_dims_mapping is not None) and \
                (compatible_dims_mapping != tensor_dims_mapping):
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
167 168
                changed = True
        else:
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            dims_mapping_list = []
            for succ_op_node in tensor_node.outputs:
                if succ_op_node.op() is not None:
                    if succ_op_node.op().type() == "create_py_reader" \
                        or succ_op_node.op().type() == "create_double_buffer_reader" \
                        or succ_op_node.op().type() == "read":
                        continue
                    op_dist_attr = self._dist_context.get_op_dist_attr_for_graph(
                        succ_op_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            tensor_desc.name())
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
                dims_mapping_list)
            if (compatible_dims_mapping is not None) and \
                (compatible_dims_mapping != tensor_dims_mapping):
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
188
                changed = True
189
        return changed
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204
    def _update_op_node_dims_mapping(self, op_node, fwd=True):
        changed = False
        if (not op_node.is_op()) or (op_node.op() is None):
            return False
        # Skip reader op
        op_desc = op_node.op()
        if op_desc.type() == "create_py_reader" \
            or op_desc.type() == "create_double_buffer_reader" \
            or op_desc.type() == "read":
            return False
        dist_op = self._dist_context.get_dist_op_for_graph(op_node)
        op_dist_attr = dist_op.dist_attr
        if fwd:
            for tensor_node in op_node.inputs:
205
                if tensor_node.is_var() and tensor_node.var() is not None:
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_input_dims_mapping(
                            tensor_desc.name()):
                        continue
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            tensor_desc.name())
                        compatible_dims_mapping = compute_compatible_dims_mapping(
                            [op_dims_mapping, tensor_dims_mapping])
                        if (compatible_dims_mapping is not None) and \
                            (compatible_dims_mapping != op_dims_mapping):
                            op_dist_attr.set_input_dims_mapping(
                                tensor_desc.name(), compatible_dims_mapping)
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
            op_dist_impl = find_best_compatible_distributed_operator_impl(
                dist_op, fwd=True)
228 229 230 231 232 233 234 235 236 237
            if op_dist_impl is not None:
                dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                if dim_changed:
                    changed = True
                if op_dist_impl.is_auto_compatible(dist_op):
                    if op_dist_impl.type == "elementwise":
                        op_dist_attr.impl_type = "default"
                    else:
                        op_dist_attr.impl_type = op_dist_impl.type
                    op_dist_attr.impl_idx = op_dist_impl.idx
238
        else:
239
            for tensor_node in op_node.outputs:
240
                if tensor_node.is_var() and tensor_node.var() is not None:
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_output_dims_mapping(
                            tensor_desc.name()):
                        continue
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        compatible_dims_mapping = compute_compatible_dims_mapping(
                            [op_dims_mapping, tensor_dims_mapping])
                        if (compatible_dims_mapping is not None) and \
                            (compatible_dims_mapping != op_dims_mapping):
                            op_dist_attr.set_output_dims_mapping(
                                tensor_desc.name(), compatible_dims_mapping)
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
            op_dist_impl = find_best_compatible_distributed_operator_impl(
                dist_op, fwd=False)
263 264 265 266 267 268 269 270 271 272
            if op_dist_impl is not None:
                dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                if dim_changed:
                    changed = True
                if op_dist_impl.is_auto_compatible(dist_op):
                    if op_dist_impl.type == "elementwise":
                        op_dist_attr.impl_type = "default"
                    else:
                        op_dist_attr.impl_type = op_dist_impl.type
                    op_dist_attr.impl_idx = op_dist_impl.idx
273
        return changed
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    def _update_dims_mapping_between_graphs(self):
        changed = False
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                parent_node)
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                child_node)
            parent_node_dims_mapping = parent_node_dist_attr.dims_mapping
            child_node_dims_mapping = child_node_dist_attr.dims_mapping
            compatible_dims_mapping = compute_compatible_dims_mapping(
                [parent_node_dims_mapping, child_node_dims_mapping])
            if (compatible_dims_mapping is not None) \
                and (compatible_dims_mapping != parent_node_dims_mapping):
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
            if (compatible_dims_mapping is not None) \
                and (compatible_dims_mapping != child_node_dims_mapping):
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
        return changed
295

296 297 298 299
    def _update_dims_mapping(self):
        # Complete dims_mapping for each node
        reach_fix_point = False
        while not reach_fix_point:
300
            changed = False
301 302 303 304 305 306 307 308 309 310 311 312 313 314
            for is_fwd in [True, False]:
                all_nodes = self._dist_context.serial_ordered_nodes \
                    if is_fwd else reversed(self._dist_context.serial_ordered_nodes)
                for node in all_nodes:
                    if node.is_var() and node.var() is not None:
                        tensor_changed = self._update_tensor_node_dims_mapping(
                            node, fwd=is_fwd)
                        if tensor_changed:
                            changed = True
                    if node.is_op() and node.op() is not None:
                        op_changed = self._update_op_node_dims_mapping(
                            node, fwd=is_fwd)
                        if op_changed:
                            changed = True
315 316 317
                graph_changed = self._update_dims_mapping_between_graphs()
                if graph_changed:
                    changed = True
318
            if changed:
319
                reach_fix_point = False
320
            else:
321 322
                reach_fix_point = True

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    def _update_process_mesh_by_nearest(self, op_node, nearest_op_node):
        op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
        # Set the process mesh of the op node by its nearest op node
        if not op_dist_attr.is_annotated("process_mesh"):
            process_mesh = op_dist_attr.process_mesh
            nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph(
                nearest_op_node)
            nearest_process_mesh = nearest_op_dis_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh(
                [process_mesh, nearest_process_mesh])
            if compatible_process_mesh is not None \
                and process_mesh != compatible_process_mesh:
                op_dist_attr.process_mesh = compatible_process_mesh
        # Skip the process_mesh setting of inputs and outputs of while_op
        if op_dist_attr.op_type == "while":
            return
        # Set the process mesh of the op node's leaf-inputs
        for tensor_node in op_node.inputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                    tensor_node)
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                # Skip the non-leaf var node
                if len(tensor_node.inputs) != 0:
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and tensor_dist_attr.process_mesh != compatible_process_mesh:
                    tensor_dist_attr.process_mesh = compatible_process_mesh
        # Set the process mesh of the op node's outputs
        for tensor_node in op_node.outputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                    tensor_node)
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and tensor_dist_attr.process_mesh != compatible_process_mesh:
                    tensor_dist_attr.process_mesh = compatible_process_mesh

    def _update_process_mesh_for_specials(self):
        def _find_nearest_tensor_node_before(nodes, idx, var_name):
            for node in reversed(nodes[:idx]):
                if node.is_var() and node.var() is not None \
                    and node.var().name() == var_name:
                    return node

        def _find_nearest_tensor_node_after(nodes, idx, var_name):
            for node in nodes[idx + 1:]:
                if node.is_var() and node.var() is not None \
                    and node.var().name() == var_name:
                    return node

        def _find_nodes_related_to_cond(source_node):
            related_nodes = []
            visited = set()
            frontier = list()
            frontier.append(source_node)
            # BFS
            while len(frontier) != 0:
                cur = frontier[0]
                frontier = frontier[1:]
                if _node_id(cur) in visited:
                    continue
                # TODO: need more restrictions
                for node in cur.inputs:
                    if node.is_var() and node.var() is not None:
                        if node.var().type() != core.VarDesc.VarType.READER \
                            and len(node.var().shape()) == 1:
                            frontier.append(node)
                            related_nodes.append(node)
                    if node.is_op() and node.op() is not None:
                        flag = True
                        if node.op().type() == "create_py_reader" \
                            or node.op().type() == "create_double_buffer_reader" \
                            or node.op().type() == "read":
                            flag = False
                        for tensor_node in node.inputs:
                            if tensor_node.is_var() and tensor_node.var(
                            ) is not None:
                                if tensor_node.var().type() == core.VarDesc.VarType.READER \
                                    or len(tensor_node.var().shape()) != 1:
                                    flag = False
                                    break
                        for tensor_node in node.outputs:
                            if tensor_node.is_var() and tensor_node.var(
                            ) is not None:
                                if tensor_node.var().type() == core.VarDesc.VarType.READER \
                                    or len(tensor_node.var().shape()) != 1:
                                    flag = False
                                    break
                        if flag:
                            frontier.append(node)
                            related_nodes.append(node)
                visited.add(_node_id(cur))
            return related_nodes

        # Amend the process meshes related to while_op
        for while_op_node, while_op_node_idx in self._while_op_nodes.values():
            sub_graph_id = while_op_node.op()._block_attr_id("sub_block")
            sub_graph = self._dist_context._serial_graph.get_sub_graph(
                sub_graph_id)
            sub_graph_nodes = list(sub_graph.all_nodes())
            while_dist_op = self._dist_context.get_dist_op_for_graph(
                while_op_node)
            while_op_dist_attr = while_dist_op.dist_attr

            # Step 1: set the process mesh of while_op to the merged process mesh of its subblock
            merged_process_mesh = while_op_dist_attr.process_mesh
            for node in sub_graph_nodes:
                if (node.is_var() and node.var() is not None) \
                    or (node.is_op() and node.op() is not None):
                    dist_attr = self._dist_context.get_dist_attr_for_graph(node)
                    merged_process_mesh = merge_process_mesh_two(
                        merged_process_mesh, dist_attr.process_mesh)
            while_op_dist_attr.process_mesh = merged_process_mesh

            # Step 2: set the related nodes of while_op to the process mesh of while_op
            # Step 2.1: Find related nodes of cond var the graph of while_op
            cond_tensor_related_nodes = []
            cond_tensor_name = while_op_node.op().input("Condition")[0]
            cond_tensor_node = None
            for node in while_op_node.inputs:
                if node.is_var() and node.var() is not None \
                    and node.var().name() == cond_tensor_name:
                    cond_tensor_node = node
                    cond_tensor_related_nodes.append(cond_tensor_node)
                    break

            cond_tensor_related_nodes.extend(
                _find_nodes_related_to_cond(cond_tensor_node))

            # Step 2.2: Find related nodes of cond var in the subgraph of while_op
            cond_tensor_node = None
            for node in reversed(sub_graph_nodes):
                if node.is_var() and node.var() is not None \
                    and node.var().name() == cond_tensor_name \
                        and len(node.outputs) == 0:
                    cond_tensor_node = node
                    break

            cond_tensor_related_nodes.extend(
                _find_nodes_related_to_cond(cond_tensor_node))
            # Step 2.3: Add the StepScops output of while_op
            stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0]
            stepscopes_tensor_node = None
            for output_node in while_op_node.outputs:
                if output_node.is_var() and output_node.var() is not None \
                    and output_node.var().name() == stepscopes_tensor_name:
                    stepscopes_tensor_node = output_node
            cond_tensor_related_nodes.append(stepscopes_tensor_node)
            # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op
            for node in cond_tensor_related_nodes:
                tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    node)
                tensor_dist_attr.process_mesh = merged_process_mesh

            # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes
            while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs
            for tensor_name, tensor_dist_attr in while_op_inputs_dist_attrs.items(
            ):
                nearest_tensor_node = _find_nearest_tensor_node_before(
                    self._dist_context.serial_ordered_nodes, while_op_node_idx,
                    tensor_name)
                nearest_tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    nearest_tensor_node)
                tensor_dist_attr.process_mesh = nearest_tensor_dist_attr.process_mesh

            # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes
            while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs
            for tensor_name, tensor_dist_attr in while_op_outputs_dist_attrs.items(
            ):
                nearest_tensor_node = _find_nearest_tensor_node_before(
                    self._dist_context.serial_ordered_nodes, while_op_node_idx,
                    tensor_name)
                if nearest_tensor_node is None:
                    nearest_tensor_node = _find_nearest_tensor_node_after(
                        self._dist_context.serial_ordered_nodes,
                        while_op_node_idx, tensor_name)
                nearest_tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    nearest_tensor_node)
                tensor_dist_attr.process_mesh = nearest_tensor_dist_attr.process_mesh

        # Amend the process meshes related to array
        for array_node_list in self._array_nodes.values():
            merged_process_mesh = None
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
                    array_node)
                merged_process_mesh = merge_process_mesh_two(
                    merged_process_mesh, dist_attr.process_mesh)
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
                    array_node)
                dist_attr.process_mesh = merged_process_mesh

    def _update_process_mesh(self):
        ordered_op_nodes = self._dist_context._serial_ordered_op_nodes

        # Step 1: Set the annotated process meshes from tensors to the first ops using them
        ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes
        for tensor_node in ordered_tensor_nodes:
            tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                tensor_node)
            if not tensor_dist_attr.is_annotated("process_mesh"):
                continue
            first_op_node = None
            for op_node in ordered_op_nodes:
                # TODO: Need a better rule for the control flow ops.
                # For now, do not set the process mesh of while_op from its inputs
                if op_node.op().type() == "while":
                    continue
                for input_tensor_node in op_node.inputs:
                    if _node_id(tensor_node) == _node_id(input_tensor_node):
                        first_op_node = op_node
                        break
                if first_op_node is not None:
                    break
            if first_op_node is None:
                continue
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(
                first_op_node)
            if op_dist_attr is not None and not op_dist_attr.is_annotated(
                    "process_mesh"):
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and op_dist_attr.process_mesh != compatible_process_mesh:
                    op_dist_attr.process_mesh = compatible_process_mesh

        # Step 2: set the process meshes of ops with the nearest op before them
        # Step 2.1: find the first op node which has the process mesh
        idx_of_first_op_node_has_process_mesh = -1
        for idx, op_node in enumerate(ordered_op_nodes):
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            if op_dist_attr.process_mesh is not None \
                and idx_of_first_op_node_has_process_mesh == -1:
                idx_of_first_op_node_has_process_mesh = idx
                # Reuse the following method to set the related tensors for same op node
                self._update_process_mesh_by_nearest(op_node, op_node)
        # Step 2.2: set the process meshes of ops by the nearest op node after the first op node
        if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes):
            return None
        for idx, op_node in enumerate(ordered_op_nodes[
                idx_of_first_op_node_has_process_mesh + 1:]):
            original_idx = idx_of_first_op_node_has_process_mesh + +idx + 1
            nearest_op_node = ordered_op_nodes[original_idx - 1]
            nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph(
                nearest_op_node)
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            assert nearest_op_dist_attr.process_mesh is not None
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)
        # Step 2.3: set the process meshes of ops by the nearest op node before the first op node
        nearest_op_node = ordered_op_nodes[
            idx_of_first_op_node_has_process_mesh]
        for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]:
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)

        # Step 3: adjust the process meshes for special ops
        self._update_process_mesh_for_specials()

    def _prepare(self):
        self._while_op_nodes = {}
        self._array_nodes = {}
        self._node_pairs_between_graphs = []
        all_nodes = self._dist_context.serial_ordered_nodes
        for idx, node in enumerate(all_nodes):
            if node.is_op():
                if node.op().type() == "while":
                    self._while_op_nodes[_node_id(node)] = (node, idx)
                if node.op().type() == "read_from_array":
                    array_var_name = node.op().input("X")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                if node.op().type() == "write_to_array":
                    array_var_name = node.op().output("Out")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                    self._array_nodes[array_var_name].append(node.outputs[0])
            if node.is_var() and node.var() is not None:
                if node.node.graph_id() != 0:
                    for before_node in reversed(all_nodes[:idx]):
                        if before_node.is_var() and before_node.var() is not None \
                            and before_node.node.graph_id() == node.node.graph_id() - 1 \
                                and before_node.var().name() == node.var().name():
                            self._node_pairs_between_graphs.append(
                                (before_node, node))
                    for after_node in all_nodes[idx + 1:]:
                        if after_node.is_var() and after_node.var() is not None \
                            and after_node.node.graph_id() == node.node.graph_id() - 1 \
                                and after_node.var().name() == node.var().name():
                            self._node_pairs_between_graphs.append(
                                (after_node, node))

623 624 625 626 627 628 629 630 631 632 633 634 635
    def complete_forward_annotation(self, serial_main_program):
        """ Complete annotation for the partial annotated serial_main_program.
        Arguments:
            serial_main_program: partial annotated serial_main_program.
        Returns:
            serial_main_program: completed annotated serial_main_program.
        """

        # Use the default distribted context for completeion if there is no one
        self._dist_context.serial_program = serial_main_program

        # Initialize distributed attributes for all var and op node in serial_main_program
        self._dist_context.init_dist_attr_for_program()
636
        # print_program_with_dist_attr(serial_main_program, self._dist_context)
637 638 639 640

        # Initialize distributed attributes for all var and op node in graph
        self._dist_context.init_dist_attr_for_graph()

641 642
        self._prepare()

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
        self._update_process_mesh()

        self._update_dims_mapping()

        # Copy the corresponding distributed attribute from graph to serial_main_program
        self._dist_context.copy_dist_attr_from_graph_to_program()
        self._dist_context.clear_dist_info_for_graph()

        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

        return serial_main_program

    def complete_backward_annotation(self, serial_main_program):
        """Complete the annotation of vars and ops in the backward phase for parallel program."""

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_forward_varname_from_grad_varname(grad_var_name):
            assert _is_grad_var_name(
                grad_var_name), "[{}] is not a grad varnme.".format(
                    grad_var_name)
            return grad_var_name[:grad_var_name.find("@GRAD")]

        def _get_op_by_id(ops, id):
            for op in ops:
                if op.desc.id() == id:
                    return op
            return None

        first_backward_op_idx = -1
        for idx, op in enumerate(serial_main_program.global_block().ops):
            if int(op.attr('op_role')) == int(
                    int(core.op_proto_and_checker_maker.OpRole.Backward) | int(
                        core.op_proto_and_checker_maker.OpRole.Loss)):
                assert op.type == "fill_constant"
                first_backward_op_idx = idx
                break

        assert first_backward_op_idx >= 0, "No backward procedure found in this program."

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context

        for idx in range(first_backward_op_idx, len(ops)):

            # complete the initial grad loss op
            if idx == first_backward_op_idx:
                assert ops[idx].type == "fill_constant"
                assert len(
                    ops[idx].input_arg_names
                ) == 0, "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].input_arg_names))
                assert len(
                    ops[idx].output_arg_names
                ) == 1, "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].output_arg_names))

                grad_var = vars[ops[idx].output_arg_names[0]]
                forward_var_name = _get_forward_varname_from_grad_varname(
                    grad_var.name)
                forward_var = vars[forward_var_name]

                # TODO complete other attribte for grad var
                tensor_dist_attr = TensorDistributedAttribute()
                process_mesh = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).process_mesh
                dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).dims_mapping
                tensor_dist_attr.dims_mapping = dims_mapping
                tensor_dist_attr.process_mesh = process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
                    grad_var, tensor_dist_attr)
722

723 724 725 726 727 728 729
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = process_mesh
                op_dist_attr.set_output_dims_mapping(grad_var.name,
                                                     dims_mapping)
                self._dist_context.set_op_dist_attr_for_program(ops[idx],
                                                                op_dist_attr)
                continue
730

731 732 733 734 735 736 737 738 739 740
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
            if grad_op.desc.id() in dist_op_context.grad_op_id_to_op_id:
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
                forward_op = _get_op_by_id(
                    ops[:first_backward_op_idx],
                    dist_op_context.grad_op_id_to_op_id[grad_op.desc.id()])
                assert forward_op is not None

J
JZ-LIANG 已提交
741
                if grad_op.type == "concat" and forward_op.type == "split":
Z
zhaoyingli 已提交
742
                    forward_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
J
JZ-LIANG 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
                        forward_op)
                    output_var = vars[grad_op.desc.output('Out')[0]]
                    split_input_var_name = forward_op.input("X")[0]
                    ref_dims_mapping = forward_op_dist_attr.get_input_dims_mapping(
                        split_input_var_name)
                    ref_mesh = forward_op_dist_attr.process_mesh

                    grad_op_dist_attr = OperatorDistributedAttribute()
                    for input_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            input_name, ref_dims_mapping)

                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
758
                    self._dist_context.set_tensor_dist_attr_for_program(
J
JZ-LIANG 已提交
759 760 761 762 763
                        output_var, output_var_dist_attr)

                    grad_op_dist_attr.set_output_dims_mapping(output_var.name,
                                                              ref_dims_mapping)
                    grad_op_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
764 765
                    self._dist_context.set_op_dist_attr_for_program(
                        grad_op, grad_op_dist_attr)
J
JZ-LIANG 已提交
766 767
                    continue

768 769 770 771 772 773 774 775 776 777 778 779 780
                # op dist attr
                forward_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
                    forward_op)
                forward_op_process_mesh = forward_op_dist_attr.process_mesh
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = forward_op_process_mesh

                # var
                for input_name in grad_op.input_arg_names:
                    input_var = vars[input_name]
                    ref_dims_mapping = None
                    if "@GRAD" in input_name:
                        forward_name = _get_forward_varname_from_grad_varname(
Z
zhaoyingli 已提交
781 782
                            input_name)
                        ref_dims_mapping = forward_op_dist_attr.get_output_dims_mapping(
783 784 785 786 787 788 789 790 791 792 793 794 795 796
                            forward_name)
                    else:
                        if forward_op_dist_attr.get_input_dims_mapping(
                                input_name):
                            ref_dims_mapping = forward_op_dist_attr.get_input_dims_mapping(
                                input_name)
                        else:
                            ref_dims_mapping = forward_op_dist_attr.get_output_dims_mapping(
                                input_name)

                    assert ref_dims_mapping is not None, "[{}] 's dims mapping is NONE".format(
                        input_var.name)
                    grad_op_dist_attr.set_input_dims_mapping(input_name,
                                                             ref_dims_mapping)
797

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
                for output_name in grad_op.desc.output_names():
                    assert len(grad_op.desc.output(output_name)) in [0, 1]
                    if _is_grad_var_name(output_name):
                        input_name = _get_forward_varname_from_grad_varname(
                            output_name)
                    else:
                        assert grad_op.type in [
                            "cast", "c_identity", "c_allreduce_sum"
                        ]
                        input_name = "X"
                    assert input_name in forward_op.desc.input_names(
                    ), "var [{}] in op [{}]'s output but could not find [{}] in its forward op".format(
                        output_name, grad_op.type, input_name)
                    if len(grad_op.desc.output(output_name)) == 1:
                        # tensor dist attr
                        output_var = vars[grad_op.desc.output(output_name)[0]]
                        forward_name = _get_forward_varname_from_grad_varname(
                            output_var.name)
                        ref_dims_mapping = forward_op_dist_attr.get_input_dims_mapping(
                            forward_name)
818

819 820 821 822 823
                        output_var_dist_attr = TensorDistributedAttribute()
                        output_var_dist_attr.dims_mapping = ref_dims_mapping
                        output_var_dist_attr.process_mesh = forward_op_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
                            output_var, output_var_dist_attr)
824

825 826
                        grad_op_dist_attr.set_output_dims_mapping(
                            output_var.name, ref_dims_mapping)
827

828 829
                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
            # only sum op for merge mutiple version grad has no a corresponding mapping in grad_op_id_to_op_id
            else:
                assert grad_op.type == "sum", "got unexpect op [{}]".format(
                    str(grad_op.type))
                assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                assert len(grad_op.output_arg_names) == 1

                ref_forward_var_name = _get_forward_varname_from_grad_varname(
                    grad_op.output_arg_names[0])
                forward_var = vars[ref_forward_var_name]
                ref_forward_var_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).dims_mapping
                ref_forward_var_process_mesh = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).process_mesh

                # output
                tensor_dist_attr = TensorDistributedAttribute()
                tensor_dist_attr.dims_mapping = ref_forward_var_dims_mapping
                tensor_dist_attr.process_mesh = ref_forward_var_process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
                    vars[grad_op.output_arg_names[0]], tensor_dist_attr)

                # op
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = ref_forward_var_process_mesh
                for var_name in grad_op.input_arg_names:
                    assert _get_forward_varname_from_grad_varname(
                        var_name) == ref_forward_var_name
                    grad_op_dist_attr.set_input_dims_mapping(
                        var_name, ref_forward_var_dims_mapping)

                grad_op_dist_attr.set_output_dims_mapping(
                    grad_op.output_arg_names[0], ref_forward_var_dims_mapping)
                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

    def complete_update_annotation(self, serial_main_program):
        """Complete the annotation of vars and ops in the update phase for parallel program."""
        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        learning_rate_completed = False

        for idx in range(len(ops)):

            # complete the annotation of the optimizer op.
            # TODO to add attribute for moment var
            op = ops[idx]
            if int(op.attr('op_role')) == int(OpRole.Optimize):
Z
zhaoyingli 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
                if op.type == "clip_by_norm":
                    param_grad = vars[op.input("X")[0]]
                    param_grad_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        param_grad)
                    assert param_grad_dist_attr is not None
                    ref_process_mesh = param_grad_dist_attr.process_mesh
                    ref_dims_mapping = param_grad_dist_attr.dims_mapping

                    out = vars[op.output("Out")[0]]
                    out_dist_attr = TensorDistributedAttribute()
                    out_dist_attr.process_mesh = ref_process_mesh
                    out_dist_attr.dims_mapping = ref_dims_mapping
                    self._dist_context.set_tensor_dist_attr_for_program(
                        out, out_dist_attr)

                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
                    op_dist_attr.set_input_dist_attr(param_grad.name,
                                                     param_grad_dist_attr)
                    op_dist_attr.set_output_dist_attr(out.name, out_dist_attr)
                    self._dist_context.set_op_dist_attr_for_program(
                        op, op_dist_attr)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

                if "Grad" in op.input_names and "Param" in ops[idx].input_names:
                    assert len(op.input(
                        "Param")) == 1, "Only support one-to-one now."
                    assert len(op.input(
                        "Grad")) == 1, "Only support one-to-one now."
                    param = vars[op.input("Param")[0]]
                    grad_var = vars[op.input("Grad")[0]]

                    param_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        param)
                    assert param_dist_attr is not None
                    ref_process_mesh = self._dist_context.get_tensor_dist_attr_for_program(
                        param).process_mesh
                    assert ref_process_mesh is not None
                    ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                        param).dims_mapping
                    assert ref_dims_mapping is not None
                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
                    op_dist_attr.set_input_dims_mapping(grad_var.name,
                                                        ref_dims_mapping)
                    op_dist_attr.set_input_dims_mapping(param.name,
                                                        ref_dims_mapping)
                    op_dist_attr.set_output_dims_mapping(param.name,
                                                         ref_dims_mapping)
                    learning_var = vars[op.input("LearningRate")[0]]
                    op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
                    op_dist_attr.set_output_dims_mapping(learning_var.name,
                                                         [-1])

                    if not learning_rate_completed:
                        learning_rate_completed = True
                        var_dist_attr = TensorDistributedAttribute()
                        var_dist_attr.process_mesh = ref_process_mesh
                        var_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
                            learning_var, var_dist_attr)

                    for input_name in op.desc.input_names():

                        if input_name in [
                                'Param', 'Grad', 'LearningRate', "SkipUpdate",
                                "Beta1Tensor", "Beta2Tensor", "EpsilonTensor",
                                "MasterParam"
                        ]:
                            continue

                        assert len(op.desc.input(input_name)) == 1
                        input_var = vars[op.desc.input(input_name)[0]]
                        input_var_attr = TensorDistributedAttribute()

                        if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
                            input_var_attr.dims_mapping = [-1]
                            op_dist_attr.set_input_dims_mapping(input_var.name,
                                                                [-1])
                            op_dist_attr.set_output_dims_mapping(input_var.name,
                                                                 [-1])
                        else:
                            assert "Moment" in input_name
                            input_var_attr.dims_mapping = ref_dims_mapping
                            op_dist_attr.set_input_dims_mapping(
                                input_var.name, ref_dims_mapping)
                            op_dist_attr.set_output_dims_mapping(
                                input_var.name, ref_dims_mapping)

                        input_var_attr.process_mesh = ref_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
                            input_var, input_var_attr)

                    self._dist_context.set_op_dist_attr_for_program(
                        op, op_dist_attr)
                    continue