roi_align_kernel.cc 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/roi_align_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/empty_kernel.h"

namespace phi {

constexpr size_t GetOffset(size_t x, size_t y, size_t width) {
  return y * width + x;
}

template <class T>
struct OffsetsAndRatios {
  OffsetsAndRatios() = default;
  OffsetsAndRatios(std::size_t xy,
                   std::size_t xY,
                   std::size_t Xy,
                   std::size_t XY,
                   T xy_ratio,
                   T xY_ratio,
                   T Xy_ratio,
                   T XY_ratio)
      : xy(xy),
        xY(xY),
        Xy(Xy),
        XY(XY),
        xy_ratio(xy_ratio),
        xY_ratio(xY_ratio),
        Xy_ratio(Xy_ratio),
        XY_ratio(XY_ratio) {}

  std::size_t xy = 0;
  std::size_t xY = 0;
  std::size_t Xy = 0;
  std::size_t XY = 0;
  T xy_ratio = 0.0f;
  T xY_ratio = 0.0f;
  T Xy_ratio = 0.0f;
  T XY_ratio = 0.0f;
};

template <typename T>
std::vector<OffsetsAndRatios<T>> GetIndexesAndRatios(
    std::size_t width,
    std::size_t height,
    const T roi_width,
    const T roi_height,
    const T roi_xmin,
    const T roi_ymin,
    std::size_t pooled_width,
    std::size_t roi_bin_grid_w,
    std::size_t pooled_height,
    std::size_t roi_bin_grid_h) {
  const auto ind_num =
      pooled_width * roi_bin_grid_w * pooled_height * roi_bin_grid_h;

  std::vector<OffsetsAndRatios<T>> interpolation_cords;
  interpolation_cords.reserve(ind_num);

  const auto bin_w = roi_width / pooled_width;
  const auto bin_h = roi_height / pooled_height;

  for (std::size_t py = 0; py < pooled_height; py++) {
    for (std::size_t px = 0; px < pooled_width; px++) {
      for (std::size_t iy = 0; iy < roi_bin_grid_h; iy++) {
        // calculate x of sample points
        auto y =
            roi_ymin +
            bin_h * (py +
                     static_cast<T>(iy + .5f) / static_cast<T>(roi_bin_grid_h));
        for (std::size_t ix = 0; ix < roi_bin_grid_w; ix++) {
          // calculate x of sample points
          auto x = roi_xmin +
                   bin_w * (px +
                            static_cast<T>(ix + .5f) /
                                static_cast<T>(roi_bin_grid_w));

          // deal with elements out of map
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
            interpolation_cords.emplace_back();
            continue;
          }
          y = y <= 0 ? 0 : y;
          x = x <= 0 ? 0 : x;

          std::size_t x_low_index = static_cast<std::size_t>(x);
          std::size_t x_high_index;
          if (x_low_index >= width - 1) {
            x_high_index = x_low_index = width - 1;
            x = static_cast<T>(x_low_index);
          } else {
            x_high_index = x_low_index + 1;
          }
          T x_ratio = x_high_index - x;

          std::size_t y_low_index = static_cast<std::size_t>(y);
          std::size_t y_high_index;
          if (y_low_index >= height - 1) {
            y_high_index = y_low_index = height - 1;
            y = static_cast<T>(y_low_index);
          } else {
            y_high_index = y_low_index + 1;
          }
          T y_ratio = y_high_index - y;

          auto xy = GetOffset(x_low_index, y_low_index, width);
          auto xY = GetOffset(x_low_index, y_high_index, width);
          auto Xy = GetOffset(x_high_index, y_low_index, width);
          auto XY = GetOffset(x_high_index, y_high_index, width);

          auto xy_ratio = x_ratio * y_ratio;
          auto xY_ratio = x_ratio * (1 - y_ratio);
          auto Xy_ratio = (1 - x_ratio) * y_ratio;
          auto XY_ratio = (1 - x_ratio) * (1 - y_ratio);

          interpolation_cords.emplace_back(
              xy, xY, Xy, XY, xy_ratio, xY_ratio, Xy_ratio, XY_ratio);
        }
      }
    }
  }
  return interpolation_cords;
}

template <typename T>
void Interpolate(std::vector<T>& interpolated_values,  // NOLINT
                 const std::vector<OffsetsAndRatios<T>>& interpolation_cords,
                 const T* data) {
  for (auto& ic : interpolation_cords) {
    auto xlyl_offset = ic.xy;
    auto xhyl_offset = ic.Xy;
    auto xlyh_offset = ic.xY;
    auto xhyh_offset = ic.XY;

    auto xlyl_ratio = ic.xy_ratio;
    auto xhyl_ratio = ic.Xy_ratio;
    auto xlyh_ratio = ic.xY_ratio;
    auto xhyh_ratio = ic.XY_ratio;

    interpolated_values.emplace_back(
        xlyl_ratio * data[xlyl_offset] + xhyl_ratio * data[xhyl_offset] +
        xlyh_ratio * data[xlyh_offset] + xhyh_ratio * data[xhyh_offset]);
  }
}

template <typename T>
void AvgPool(const std::vector<T>& interpolated_values,
             T* output_data,
             int roi_bin_grid_w,
             int roi_bin_grid_h,
             int pooled_width,
             int pooled_height) {
  const auto data_amount = pooled_width * pooled_height;
  const auto grid_points = roi_bin_grid_w * roi_bin_grid_h;
  const T count = 1.0 / grid_points;
  auto val_begin = interpolated_values.cbegin();
  for (auto i = 0; i < data_amount; ++i) {
    T sum = 0.0;
    auto val_end = val_begin + grid_points;
    sum = std::accumulate(val_begin, val_end, sum);
    val_begin = val_end;
    output_data[i] = sum * count;
  }
}

template <typename T, typename Context>
182
void RoiAlignKernel(const Context& dev_ctx,
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
                    const DenseTensor& x,
                    const DenseTensor& boxes,
                    paddle::optional<const DenseTensor&> boxes_num,
                    int pooled_height,
                    int pooled_width,
                    float spatial_scale,
                    int sampling_ratio,
                    bool aligned,
                    DenseTensor* out) {
  auto in_dims = x.dims();
  int batch_size = in_dims[0];
  int channels = in_dims[1];
  int height = in_dims[2];
  int width = in_dims[3];
  int rois_num = boxes.dims()[0];

  auto in_stride = phi::stride(in_dims);
  auto roi_stride = phi::stride(boxes.dims());
  auto out_stride = phi::stride(out->dims());

  const T* input_data = x.data<T>();
  DenseTensor roi_batch_id_list = Empty<int>(dev_ctx, {rois_num});
  int* roi_batch_id_data = roi_batch_id_list.data<int>();
  int boxes_batch_size;
  if (boxes_num) {
    boxes_batch_size = boxes_num->numel();
    PADDLE_ENFORCE_EQ(
        boxes_batch_size,
        batch_size,
        errors::InvalidArgument(
            "The batch size of rois and the batch size of images "
            " must be the same. But received the batch size of rois is %d, "
            "and the batch size of images is %d",
            boxes_batch_size,
            batch_size));
    auto* boxes_num_data = boxes_num->data<int>();
    int start = 0;
    for (int n = 0; n < boxes_batch_size; ++n) {
      for (int i = start; i < start + boxes_num_data[n]; ++i) {
        roi_batch_id_data[i] = n;
      }
      start += boxes_num_data[n];
    }
  } else {
    auto lod = boxes.lod();
    PADDLE_ENFORCE_EQ(
        lod.empty(),
        false,
        errors::InvalidArgument("Input(ROIs) Tensor of ROIAlignOp "
                                "does not contain LoD information."));
    auto boxes_lod = lod.back();
    int boxes_batch_size = boxes_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        boxes_batch_size,
        batch_size,
        errors::InvalidArgument(
            "The boxes_batch_size and imgs "
            "batch_size must be the same. But received boxes_batch_size = %d, "
            "batch_size = %d",
            boxes_batch_size,
            batch_size));
    int boxes_num_with_lod = boxes_lod[boxes_batch_size];
    PADDLE_ENFORCE_EQ(
        rois_num,
        boxes_num_with_lod,
        errors::InvalidArgument(
            "The actual number of rois and the number of rois "
            "provided from Input(RoIsLoD) in RoIAlign must be the same."
            " But received actual number of rois is %d, and the number "
            "of rois from RoIsLoD is %d",
            rois_num,
            boxes_num_with_lod));
    for (int n = 0; n < boxes_batch_size; ++n) {
      for (std::size_t i = boxes_lod[n]; i < boxes_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
  }
  T* output_data = dev_ctx.template Alloc<T>(out);
  const T* boxes_data = boxes.data<T>();
  T roi_offset = aligned ? T(0.5) : 0;
  for (int n = 0; n < rois_num; ++n) {
    int roi_batch_id = roi_batch_id_data[n];
    T roi_xmin = boxes_data[0] * spatial_scale - roi_offset;
    T roi_ymin = boxes_data[1] * spatial_scale - roi_offset;
    T roi_xmax = boxes_data[2] * spatial_scale - roi_offset;
    T roi_ymax = boxes_data[3] * spatial_scale - roi_offset;

    T roi_width = roi_xmax - roi_xmin;
    T roi_height = roi_ymax - roi_ymin;
    if (!aligned) {
      roi_width = std::max(roi_width, static_cast<T>(1.));
      roi_height = std::max(roi_height, static_cast<T>(1.));
    }

    const T* batch_data = input_data + roi_batch_id * in_stride[0];

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    auto interpolation_cords = GetIndexesAndRatios(width,
                                                   height,
                                                   roi_width,
                                                   roi_height,
                                                   roi_xmin,
                                                   roi_ymin,
                                                   pooled_width,
                                                   roi_bin_grid_w,
                                                   pooled_height,
                                                   roi_bin_grid_h);

    std::vector<T> interpolated_values;
    interpolated_values.reserve(interpolation_cords.size());
    for (auto channel = 0; channel < channels; ++channel) {
      Interpolate(interpolated_values, interpolation_cords, batch_data);
      AvgPool(interpolated_values,
              output_data,
              roi_bin_grid_w,
              roi_bin_grid_h,
              pooled_width,
              pooled_height);
      batch_data += in_stride[1];
      output_data += out_stride[1];
      interpolated_values.clear();
    }
    boxes_data += roi_stride[0];
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
318
    roi_align, CPU, ALL_LAYOUT, phi::RoiAlignKernel, float, double, int) {}