data_transform.cc 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/data_transform.h"
16

17 18
#include "paddle/phi/api/ext/dispatch.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
19
#include "paddle/phi/api/lib/utils/storage.h"
20 21 22
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/transfer_layout_kernel.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include "paddle/fluid/framework/data_device_transform.h"

namespace paddle {
namespace experimental {

inline bool NeedTransformDataType(const DataType& input,
                                  const DataType& target,
                                  const TransformFlag& transform_flag) {
  return input != target &&
         (transform_flag.need_trans_data_type() ||
          target == DataType::COMPLEX64 || target == DataType::COMPLEX128);
}

inline bool NeedTransformPlace(const paddle::platform::Place& input,
                               const Backend& target,
                               const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_backend() &&
             target != Backend::ALL_BACKEND &&
42
             !platform::is_same_place(input, phi::TransToPhiPlace(target));
43 44 45 46 47 48 49 50 51 52 53 54
  return ret;
}

inline bool NeedTransformLayout(const DataLayout& input,
                                const DataLayout& target,
                                const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_layout() &&
             (input != DataLayout::ALL_LAYOUT &&
              target != DataLayout::ALL_LAYOUT && input != target);
  return ret;
}

55 56
inline phi::DenseTensor TransDataLayout(const phi::DenseTensor& tensor,
                                        DataLayout layout) {
57 58 59 60
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  VLOG(3) << "DataLayoutTransform src_layout: " << tensor.layout()
          << " dst_layout: " << layout;
  if (platform::is_cpu_place(tensor.place())) {
61 62
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
    return phi::TransferLayout(*dev_ctx, tensor, layout);
63
  } else {
64
    PADDLE_THROW(phi::errors::PreconditionNotMet(
65 66 67 68 69
        "Unsupported data layout cast from CPU to GPU."));
  }
}

template <typename Context>
70 71 72
phi::DenseTensor CastDateType(const Context& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
73 74
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
75
      return phi::Cast<float>(dev_ctx, tensor, dtype);
76
    case DataType::FLOAT64:
77
      return phi::Cast<double>(dev_ctx, tensor, dtype);
78
    case DataType::INT32:
79
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
80
    case DataType::INT64:
81
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
82
    case DataType::FLOAT16:
83
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
84
    case DataType::BFLOAT16:
85
      return phi::Cast<phi::dtype::bfloat16>(dev_ctx, tensor, dtype);
86
    case DataType::BOOL:
87
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
88
    case DataType::INT16:
89
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
90
    case DataType::UINT8:
91
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
92
    default:
93
      PADDLE_THROW(phi::errors::Unimplemented(
94 95 96 97 98 99
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
100 101 102
phi::DenseTensor CastDateType(const phi::GPUContext& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
103 104
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
105
      return phi::Cast<float>(dev_ctx, tensor, dtype);
106
    case DataType::FLOAT64:
107
      return phi::Cast<double>(dev_ctx, tensor, dtype);
108
    case DataType::INT32:
109
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
110
    case DataType::INT64:
111
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
112
    case DataType::FLOAT16:
113
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
114
    case DataType::BOOL:
115
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
116
    case DataType::INT16:
117
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
118
    case DataType::UINT8:
119
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
120
    default:
121
      PADDLE_THROW(phi::errors::Unimplemented(
122 123 124 125 126 127
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}
#endif

128 129
inline phi::DenseTensor TransDataType(const phi::DenseTensor& tensor,
                                      DataType dtype) {
130 131 132 133 134
  auto& pool = paddle::platform::DeviceContextPool::Instance();

  VLOG(3) << "DataTypeTransform src_dtype: " << tensor.dtype()
          << " dst_dtype: " << dtype;

135 136
  phi::DenseTensor out(
      phi::make_intrusive<paddle::experimental::SharedStorage>(tensor.place()),
137 138 139
      {dtype, tensor.dims(), tensor.layout()});

  if (platform::is_cpu_place(tensor.place())) {
140
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
141 142 143
    return CastDateType(*dev_ctx, tensor, dtype);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else if (platform::is_gpu_place(tensor.place())) {
144
    auto* dev_ctx = static_cast<phi::GPUContext*>(pool.Get(tensor.place()));
145 146 147
    return CastDateType(*dev_ctx, tensor, dtype);
#endif
  } else {
148
    PADDLE_THROW(phi::errors::Unimplemented(
149 150 151 152 153
        "Place type is not supported when casting data type."));
  }
  return out;
}

154 155 156 157
phi::DenseTensor TransformData(const phi::DenseTensor& tensor,
                               const phi::TensorArgDef& target_args_def,
                               const TransformFlag& transform_flag) {
  phi::DenseTensor out = tensor;
158 159 160 161 162 163 164 165 166 167 168 169
  if (NeedTransformLayout(
          tensor.layout(), target_args_def.layout, transform_flag)) {
    out = TransDataLayout(out, target_args_def.layout);
  }

  if (NeedTransformDataType(
          tensor.dtype(), target_args_def.dtype, transform_flag)) {
    out = TransDataType(out, target_args_def.dtype);
  }

  if (NeedTransformPlace(
          out.place(), target_args_def.backend, transform_flag)) {
170 171
    phi::DenseTensor result(
        phi::make_intrusive<paddle::experimental::SharedStorage>(
172
            phi::TransToPhiPlace(target_args_def.backend)),
173 174
        {out.dtype(), out.dims(), out.layout()});
    framework::TransDataDevice(
175
        out, phi::TransToPhiPlace(target_args_def.backend), &result);
176 177 178 179 180
    out = result;
  }
  return out;
}

181
std::shared_ptr<phi::DenseTensor> PrepareData(
182
    const Tensor& input,
183
    const phi::TensorArgDef& target_args_def,
184 185 186 187 188 189 190 191 192
    const TransformFlag& transform_flag) {
  const auto& tensor_in = input.impl();
  if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
      (!NeedTransformPlace(
           tensor_in->place(), target_args_def.backend, transform_flag) &&
       !NeedTransformDataType(
           tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
       !NeedTransformLayout(
           tensor_in->layout(), target_args_def.layout, transform_flag))) {
193
    return std::dynamic_pointer_cast<phi::DenseTensor>(tensor_in);
194 195
  }

196 197
  phi::DenseTensor out =
      TransformData(*(static_cast<phi::DenseTensor*>(tensor_in.get())),
198 199
                    target_args_def,
                    transform_flag);
200
  return std::make_shared<phi::DenseTensor>(out);
201 202
}

203 204 205 206 207 208 209 210 211 212
std::shared_ptr<phi::DenseTensor> PrepareData(
    const paddle::optional<Tensor>& input,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (input) {
    return PrepareData(*input, target_args_def, transform_flag);
  }
  return {nullptr};
}

213
std::unique_ptr<std::vector<phi::DenseTensor>> PrepareData(
214
    const std::vector<Tensor>& inputs,
215
    const phi::TensorArgDef& target_args_def,
216
    const TransformFlag& transform_flag) {
217
  auto pt_tensors = std::make_unique<std::vector<phi::DenseTensor>>();
218 219 220 221 222 223 224 225 226 227 228 229
  pt_tensors->reserve(inputs.size());

  for (const auto& input : inputs) {
    const auto& tensor_in = input.impl();
    if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
        (!NeedTransformPlace(
             tensor_in->place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             tensor_in->layout(), target_args_def.layout, transform_flag))) {
      pt_tensors->emplace_back(
230
          *std::dynamic_pointer_cast<phi::DenseTensor>(tensor_in));
231 232
    } else {
      pt_tensors->emplace_back(
233
          TransformData(*(static_cast<phi::DenseTensor*>(tensor_in.get())),
234 235 236 237 238 239 240 241 242 243
                        target_args_def,
                        transform_flag));
    }
  }

  return std::move(pt_tensors);
}

}  // namespace experimental
}  // namespace paddle