binary.cc 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

// See Note [ Why still include the fluid headers? ]
#include "paddle/pten/infershape/binary.h"
17
#include "paddle/pten/kernels/functions/general/elementwise_base.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
namespace pten {

DenseTensorMeta DotInferShape(const DenseTensorMeta& x_meta,
                              const DenseTensorMeta& y_meta) {
  auto x_dims = x_meta.dims;
  auto x_rank = static_cast<size_t>(x_dims.size());
  PADDLE_ENFORCE_EQ(true,
                    1 == x_rank || 2 == x_rank,
                    paddle::platform::errors::PreconditionNotMet(
                        "ShapeError: The dimensions of input tensor X (%s) "
                        "should be 1 or 2",
                        x_dims.to_str()));

  auto y_dims = y_meta.dims;
  PADDLE_ENFORCE_EQ(
      true,
      x_rank == (size_t)y_dims.size(),
      paddle::platform::errors::PreconditionNotMet(
          "ShapeError: The shape of input tensor Y: %s should match with "
          "input tenosr X: %s",
          y_dims.to_str(),
          x_dims.to_str()));
  bool shape_match = true;
  for (size_t i = 0; i < x_rank; ++i) {
    if (x_dims[i] != y_dims[i]) {
      shape_match = false;
      break;
    }
  }

  PADDLE_ENFORCE_EQ(true,
                    shape_match,
                    paddle::platform::errors::PreconditionNotMet(
                        "ShapeError: The shape of input tensor X: %s should "
                        "be exactly the same "
                        "with input tensor Y: %s",
                        x_dims.to_str(),
                        y_dims.to_str()));

  x_dims[x_dims.size() - 1] = 1;
  DenseTensorMeta return_meta(x_meta.type, x_dims, x_meta.layout);
  return return_meta;
}

Z
zyfncg 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
DenseTensorMeta MatmulInferShape(const DenseTensorMeta& x_meta,
                                 const DenseTensorMeta& y_meta,
                                 bool trans_x,
                                 bool trans_y) {
  std::vector<int64_t> dims_x = paddle::framework::vectorize(x_meta.dims);
  std::vector<int64_t> dims_y = paddle::framework::vectorize(y_meta.dims);
  auto ndims_x = dims_x.size();
  auto ndims_y = dims_y.size();
  PADDLE_ENFORCE_GT(ndims_x,
                    0,
                    paddle::platform::errors::InvalidArgument(
                        "The Input(x) dims size must be greater than 0,"
                        " but reviced dims size is 0. "));
  PADDLE_ENFORCE_GT(ndims_y,
                    0,
                    paddle::platform::errors::InvalidArgument(
                        "The Input(y) dims size must be greater than 0,"
                        " but reviced dims size is 0. "));

  bool x_broadcasted = false, y_broadcasted = false;
  if (ndims_x == 1) {
    dims_x.insert(dims_x.begin(), 1);
    ndims_x = 2;
    x_broadcasted = true;
  }

  if (ndims_y == 1) {
    dims_y.push_back(1);
    ndims_y = 2;
    y_broadcasted = true;
  }

  size_t M, N;
  if (trans_x) {
    M = dims_x[ndims_x - 1];
  } else {
    M = dims_x[ndims_x - 2];
  }
  if (trans_y) {
    N = dims_y[ndims_y - 2];
  } else {
    N = dims_y[ndims_y - 1];
  }

  std::vector<int64_t> new_dims;
  if (ndims_x > ndims_y) {
    new_dims.assign(dims_x.begin(), dims_x.end() - 2);
  } else if (ndims_x < ndims_y) {
    new_dims.assign(dims_y.begin(), dims_y.end() - 2);
  } else {
    new_dims.reserve(ndims_x);
    for (size_t i = 0; i < ndims_x - 2; ++i) {
      new_dims.push_back(std::max(dims_x[i], dims_y[i]));
    }
  }
  if (!x_broadcasted) {
    new_dims.push_back(M);
  }
  if (!y_broadcasted) {
    new_dims.push_back(N);
  }
  if (x_broadcasted && y_broadcasted) {
    new_dims.push_back(1);
  }

  auto ddim_out = paddle::framework::make_ddim(new_dims);

  return {x_meta.type, ddim_out, x_meta.layout};
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
DenseTensorMeta ElementwiseInferShape(const DenseTensorMeta& x_meta,
                                      const DenseTensorMeta& y_meta,
                                      int axis) {
  DenseTensorMeta return_meta(x_meta.type, x_meta.dims, x_meta.layout);
  if (x_meta.dims != y_meta.dims) {
    auto x_dims = x_meta.dims;
    auto y_dims = y_meta.dims;
    int max_dim = std::max(x_dims.size(), y_dims.size());
    if (x_dims.size() == y_dims.size()) {
      PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0),
                        true,
                        paddle::platform::errors::InvalidArgument(
                            "axis should be -1 or 0 while the dimension of "
                            "tensor X (%s) is equal to the dimension of "
                            "tensor Y (%s), but received axis: %s",
                            x_dims.size(),
                            y_dims.size(),
                            axis));
    }
    PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim),
                      true,
                      paddle::platform::errors::InvalidArgument(
                          "The axis range must be [%s, %s), but axis is %s. "
                          "Please set the axis again.",
                          -1 * max_dim,
                          max_dim,
                          axis));
    axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                     : axis);
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
    std::vector<int> out_dims_array(max_dim);
    general::GetBroadcastDimsArrays(x_dims,
                                    y_dims,
                                    x_dims_array.data(),
                                    y_dims_array.data(),
                                    out_dims_array.data(),
                                    max_dim,
                                    axis);
    return_meta.dims = paddle::framework::make_ddim(out_dims_array);
  }
  return_meta.lod = x_meta.lod;
  return return_meta;
}

177
}  // namespace pten