conv_fusion_op.cc 12.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17

Q
qingqing01 已提交
18
#include "paddle/fluid/operators/conv_op.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
Q
qingqing01 已提交
20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

// This fused conv follows the equation:
//   y = act ( alpha1 * conv(x) + alpha2 * z + bias ).
//   here, y is Output,
//         x is Input,
//         z is ResidualData,
//         bias is Bias
T
tianshuo78520a 已提交
30
// When `split_channels` is set, y will be split into multiple outputs,
Q
qingqing01 已提交
31
// each output has split_channels[i] number of channels.
Q
qingqing01 已提交
32 33 34 35 36 37 38 39
class Conv2DFusionOpMaker : public Conv2DOpMaker {
 protected:
  void Apply() override {
    AddAttr<std::string>(
        "activation",
        "The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
        "'relux' , 'tanh', 'band_pass'")
        .SetDefault("relu");
Q
qingqing01 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    AddAttr<std::vector<int>>(
        "split_channels",
        "When `split_channels` are set, there will be multiple outputs, the "
        "output size is equal to the number of `split_channels`.")
        .SetDefault({});
    AddOutput("Outputs",
              "This Outputs is used when setting `split_channels`."
              "Usually used to fuse conv with same input and same filter size, "
              "padding, stride, dilation size.")
        .AsDuplicable()
        .AsDispensable();
    AddInput("AlgoCache",
             "The cache of convolution algorithm, a RAW type variable.")
        .AsDispensable();
    AddAttr<int>(
        "search_times",
        "The number of exhaustive search times for convolution algorithm.")
        .SetDefault(-1);
Q
qingqing01 已提交
58 59
  }
};
Q
qingqing01 已提交
60

Z
Zeng Jinle 已提交
61
class Conv2DFusionOp : public operators::ConvOp {
Q
qingqing01 已提交
62
 public:
Z
Zeng Jinle 已提交
63 64 65 66
  using operators::ConvOp::ConvOp;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
67 68
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv2DFusion");
    OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "Conv2DFusion");
69

70
    auto in_dims = ctx->GetInputDim("Input");
71
    PADDLE_ENFORCE_EQ(
72 73
        in_dims.size(),
        4U,
74 75 76
        platform::errors::InvalidArgument(
            "The input's dimension of Operator(Conv2DFusion) is expected "
            "to be 4. But received: input's dimension = %u, shape = [%s].",
77 78
            in_dims.size(),
            in_dims));
79 80 81 82

    // In some case, attribute data_format is "AnyLayout".
    std::string data_format = ctx->Attrs().Get<std::string>("data_format");
    PADDLE_ENFORCE_NE(
83
        data_format,
84
        "NDHWC",
85
        platform::errors::PermissionDenied(
86 87 88
            "Operator(Conv2DFusion) supports data format of "
            "channel first (NCHW,NCDHW) and data format of channel last(NHWC) "
            "now. But received: data_format = '%s'.",
89
            data_format));
90 91 92 93
    // MKL-DNN Kernels are using NCHW order of dims description
    // so we ignore data_format consideration for MKL-DNN kernel
    const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
                              (data_format == "NHWC" || data_format == "NDHWC");
94
    std::vector<int64_t> output_shape = ComputeOutputShape(ctx);
95
    ctx->SetOutputDim("Output", phi::make_ddim(output_shape));
96
    ctx->ShareLoD("Input", "Output");
97

98
    std::vector<int> split_channels =
Q
qingqing01 已提交
99
        ctx->Attrs().Get<std::vector<int>>("split_channels");
100
    if (split_channels.size()) {
101 102
      OP_INOUT_CHECK(
          ctx->HasOutputs("Outputs"), "Output", "Outputs", "Conv2DFusion");
103
      PADDLE_ENFORCE_EQ(
104 105
          ctx->Outputs("Outputs").size(),
          split_channels.size(),
106 107 108 109 110
          platform::errors::InvalidArgument(
              "The number of Output(Outputs) of operator 'Conv2DFusion' is "
              "expected to be equal to the length of Attr(split_channels). But "
              "reiceved: the number of Output(Outputs) = %u; the length of "
              "Attr(split_channels) = %u, the content = [%s].",
111 112
              ctx->Outputs("Outputs").size(),
              split_channels.size(),
113
              phi::make_ddim(split_channels)));
114 115 116 117 118

      int split_channels_sum = 0;
      std::vector<framework::DDim> output_shapes(split_channels.size());
      for (size_t i = 0; i < split_channels.size(); ++i) {
        split_channels_sum += split_channels[i];
119 120 121 122 123 124 125 126 127 128 129
        if (channel_last) {
          output_shapes[i] = phi::make_ddim({output_shape[0],
                                             output_shape[1],
                                             output_shape[2],
                                             split_channels[i]});
        } else {
          output_shapes[i] = phi::make_ddim({output_shape[0],
                                             split_channels[i],
                                             output_shape[2],
                                             output_shape[3]});
        }
Q
qingqing01 已提交
130
      }
131 132 133
      int output_channels = output_shape[1];
      // for NHWC
      if (channel_last) output_channels = output_shape[3];
134
      PADDLE_ENFORCE_EQ(
135
          split_channels_sum,
136
          output_channels,
137
          platform::errors::InvalidArgument(
138 139
              "The sum of Attr(split_channels) is expected to be equal to "
              "the "
140
              "total output channels. But received: the sum of "
141
              "Attr(split_channels) = %d, the total output channels = %d.",
142
              split_channels_sum,
143
              output_channels));
144
      ctx->SetOutputsDim("Outputs", output_shapes);
Q
qingqing01 已提交
145 146
    }
  }
H
hong 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

  std::vector<int64_t> ComputeOutputShape(
      framework::InferShapeContext* ctx) const {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
    OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");

    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");

    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
    std::string padding_algorithm =
        ctx->Attrs().Get<std::string>("padding_algorithm");
    int groups = ctx->Attrs().Get<int>("groups");
    std::vector<int> dilations =
        ctx->Attrs().Get<std::vector<int>>("dilations");
    int dilation_size = dilations.size();
    for (int i = 0; i < dilation_size; ++i) {
      PADDLE_ENFORCE_GT(
166 167
          dilations[i],
          0,
H
hong 已提交
168 169 170 171 172 173 174 175
          platform::errors::InvalidArgument(
              "The dilation of Op(Conv) should be larget than 0, but received "
              "dilation is %d.",
              dilations[i]));
    }
    const std::string data_format =
        ctx->Attrs().Get<std::string>("data_format");

176 177 178 179 180 181 182 183 184 185 186
    // if data_format is NHWC, we convert the weight dimension to the form of
    // nchw to minimize program changes.
    if (data_format == "NHWC") {
      int kh = filter_dims[1];
      int kw = filter_dims[2];
      int ic = filter_dims[3];
      filter_dims[1] = ic;
      filter_dims[2] = kh;
      filter_dims[3] = kw;
    }

H
hong 已提交
187 188 189 190 191 192
    // MKL-DNN Kernels are using NCHW order of dims description
    // so we ignore data_format consideration for MKL-DNN kernel
    const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
                              (data_format == "NHWC" || data_format == "NDHWC");

    PADDLE_ENFORCE_EQ(
193 194
        in_dims.size() == 4 || in_dims.size() == 5,
        true,
H
hong 已提交
195 196 197
        platform::errors::InvalidArgument(
            "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
            "received: input's dimension is %u, input's shape is [%s].",
198 199
            in_dims.size(),
            in_dims));
H
hong 已提交
200 201

    PADDLE_ENFORCE_EQ(
202 203
        in_dims.size(),
        filter_dims.size(),
H
hong 已提交
204 205 206 207 208 209
        platform::errors::InvalidArgument(
            "The input's dimension and filter's dimension of "
            "Op(Conv) should be equal. But received: the input's shape is "
            "[%s], "
            "the input's dimension is %d; the filter's shape is [%s],  "
            "the filter's dimension is %d.",
210 211 212 213
            in_dims,
            in_dims.size(),
            filter_dims,
            filter_dims.size()));
H
hong 已提交
214 215 216 217

    int stride_size = strides.size();
    for (int i = 0; i < stride_size; ++i) {
      PADDLE_ENFORCE_GT(
218 219
          strides[i],
          0,
H
hong 已提交
220 221 222 223 224 225 226 227
          platform::errors::InvalidArgument(
              "The stride of Op(Conv) should be larget than 0, but received "
              "stride is %d.",
              strides[i]));
    }

    int in_sub_stride_size = in_dims.size() - stride_size;
    PADDLE_ENFORCE_EQ(
228 229
        in_dims.size(),
        strides.size() + 2U,
H
hong 已提交
230 231 232 233 234 235
        platform::errors::InvalidArgument(
            "The difference of input's dimension and Attr(strides)'s "
            "length must be euqal to 2 for Op(Conv). "
            "But received: input's dimension is %d, input's shape is [%s]; "
            "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
            "difference of input's dimention and Attr(strides)'s length = %u.",
236 237 238 239
            in_dims.size(),
            in_dims,
            strides.size(),
            phi::make_ddim(strides),
H
hong 已提交
240 241 242 243 244 245
            in_sub_stride_size));

    const auto input_channels =
        channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];

    PADDLE_ENFORCE_EQ(
246 247
        input_channels,
        filter_dims[1] * groups,
H
hong 已提交
248 249 250 251 252 253 254
        platform::errors::InvalidArgument(
            "The number of input's channels should be equal to filter's "
            "channels "
            "* groups for Op(Conv). But received: the input's channels is %d, "
            "the input's shape is [%s]; the filter's channels is %d, the "
            "filter's shape is [%s]; the groups is %d, the data_format is %s. "
            "The error may come from wrong data_format setting.",
255 256 257 258 259
            input_channels,
            in_dims,
            filter_dims[1],
            filter_dims,
            groups,
H
hong 已提交
260 261
            data_format));
    PADDLE_ENFORCE_EQ(
262 263
        filter_dims[0] % groups,
        0,
H
hong 已提交
264 265 266 267 268
        platform::errors::InvalidArgument(
            "The number of output's channels (filter's first dimension) of "
            "Op(Conv) should be divided by groups. But received: "
            "the output channels is %d, the filter's shape is [%s], "
            "the groups is %d.",
269 270 271
            filter_dims[0],
            filter_dims,
            groups));
H
hong 已提交
272 273 274

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_GT(
275 276
          filter_dims[0],
          0,
H
hong 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
          platform::errors::InvalidArgument(
              "the size of filter at axis 0 should be greater than 0"));
    }

    framework::DDim in_data_dims;
    if (channel_last) {
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
    } else {
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
    }

    framework::DDim filter_data_dims =
        phi::slice_ddim(filter_dims, 2, filter_dims.size());

    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
292 293
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
H
hong 已提交
294 295 296 297 298 299 300 301 302 303

    std::vector<int64_t> output_shape({in_dims[0]});
    if (!channel_last) {
      output_shape.push_back(filter_dims[0]);
    }
    for (int i = 0; i < in_data_dims.size(); ++i) {
      if ((!ctx->IsRuntime()) &&
          (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
        output_shape.push_back(-1);
      } else {
304 305 306 307 308 309
        output_shape.push_back(ConvOutputSize(in_data_dims[i],
                                              filter_data_dims[i],
                                              dilations[i],
                                              paddings[2 * i],
                                              paddings[2 * i + 1],
                                              strides[i]));
H
hong 已提交
310 311 312 313 314 315 316 317
      }
    }
    if (channel_last) {
      output_shape.push_back(filter_dims[0]);
    }

    return output_shape;
  }
Q
qingqing01 已提交
318 319
};

Q
qingqing01 已提交
320 321 322 323 324 325
// TODO(qingqing): add gradient operator for conv2d_fusion

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
326
REGISTER_OPERATOR(
327 328 329
    conv2d_fusion,
    ops::Conv2DFusionOp,
    ops::Conv2DFusionOpMaker,
Z
Zeng Jinle 已提交
330
    ops::ConvOpInferVarType,
H
hong 已提交
331 332
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
333 334 335 336 337 338 339 340 341 342

// This op is used by cutlass, conv2d_fusion_cutlass is a intermediate op
// produced by conv2d_fusion_layout_transfer_pass.
REGISTER_OPERATOR(
    conv2d_fusion_cutlass,
    ops::Conv2DFusionOp,
    ops::Conv2DFusionOpMaker,
    ops::ConvOpInferVarType,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);