ConvOpTest.h 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "FunctionTest.h"

namespace paddle {

template <DeviceType DType1, DeviceType DType2>
void forward(Compare2Function<DType1, DType2>& test,
             const TensorShape& input,
             const TensorShape& filter,
             const TensorShape& output) {
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
  test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
  test.run();
}

template <DeviceType DType1, DeviceType DType2>
void backward_input(Compare2Function<DType1, DType2>& test,
                    const TensorShape& input,
                    const TensorShape& filter,
                    const TensorShape& output) {
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
  test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
  test.run();
}

template <DeviceType DType1, DeviceType DType2>
void backward_filter(Compare2Function<DType1, DType2>& test,
                     const TensorShape& input,
                     const TensorShape& filter,
                     const TensorShape& output) {
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
  test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
  test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter), ADD_TO);
  test.run();
}

template <DeviceType DType1, DeviceType DType2>
using Function = void (*)(Compare2Function<DType1, DType2>& test,
                          const TensorShape& input,
                          const TensorShape& filter,
                          const TensorShape& output);

/**
 * \brief A basic convolution function test interface.
 *
 * \param conv1         type name of convolution function 1.
 * \param conv2         type name of convolution function 2.
 * \param function      test function, can be one of the forward, backward_input
 *                      backward_filter function.
 * Example:
 * 1. Compare GemmConv's CPU and GPU implementation:
 *   Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
 *      "GemmConv-CPU", "GemmConv-GPU", forward);
 */
template <DeviceType DType1, DeviceType DType2>
void Convolution(const std::string& conv1,
                 const std::string& conv2,
                 Function<DType1, DType2> function) {
  for (size_t batchSize : {1, 5}) {
    for (size_t inputSize : {7, 14, 31}) {
      for (size_t filterSize : {1, 3, 5}) {
        for (size_t inputChannels : {3, 16}) {
          for (size_t outputChannels : {3, 16}) {
            if (outputChannels < inputChannels) continue;
            for (size_t stride : {1, 2}) {
              for (size_t padding : {0, 1}) {
X
xzl 已提交
82
                for (size_t dilation : {1, 3}) {
X
xzl 已提交
83
                  if (padding >= filterSize) break;
84
                  size_t filterS = (filterSize - 1) * dilation + 1;
H
hedaoyuan 已提交
85

86 87 88 89 90
                  if (inputSize + 2 * padding < filterS) break;

                  if ((conv1 == "NaiveConv-CPU" || conv2 == "NaiveConv-CPU" ||
                       conv1 == "NNPACKConv-CPU" ||
                       conv2 == "NNPACKConv-CPU") &&
X
xzl 已提交
91 92 93
                      dilation > 1)
                    break;

X
xzl 已提交
94 95 96 97 98
                  // NNPACK only supports stride = 1 if batchSize > 1
                  if ((conv1 == "NNPACKConv-CPU" ||
                       conv2 == "NNPACKConv-CPU") &&
                      batchSize > 1 && stride > 1)
                    break;
H
hedaoyuan 已提交
99

X
xzl 已提交
100
                  size_t outputSize =
101
                      (inputSize - filterS + 2 * padding + stride) / stride;
X
xzl 已提交
102 103 104 105 106 107 108 109 110 111
                  VLOG(3) << " batchSize=" << batchSize
                          << " inputChannels=" << inputChannels
                          << " inputHeight=" << inputSize
                          << " inputWidth=" << inputSize
                          << " outputChannels=" << outputChannels
                          << " filterHeight=" << filterSize
                          << " filterWidth=" << filterSize
                          << " outputHeight=" << outputSize
                          << " outputWidth=" << outputSize
                          << " stride=" << stride << " padding=" << padding;
112

X
xzl 已提交
113 114 115 116 117 118 119 120 121 122 123 124
                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
                  std::vector<size_t> dilations = {dilation, dilation};
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
                          .set("dilations", dilations)
                          .set("groups", (size_t)1)
                          .set("algo", (std::string) "auto"));
125

X
xzl 已提交
126 127 128 129 130 131
                  TensorShape input{
                      batchSize, inputChannels, inputSize, inputSize};
                  TensorShape filter{
                      outputChannels, inputChannels, filterSize, filterSize};
                  TensorShape output{
                      batchSize, outputChannels, outputSize, outputSize};
132

X
xzl 已提交
133 134
                  function(test, input, filter, output);
                }
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
              }
            }
          }
        }
      }
    }
  }
}

/**
 * \brief A convolution function test interface for
 *        image height is not equal image width.
 */
template <DeviceType DType1, DeviceType DType2>
void Convolution2(const std::string& conv1,
                  const std::string& conv2,
                  Function<DType1, DType2> function) {
  for (size_t batchSize : {4}) {
    for (size_t inputHeight : {7, 31}) {
      for (size_t inputWidth : {10, 54}) {
        for (size_t filterHeight : {1, 5}) {
          for (size_t filterWidth : {3, 7}) {
            for (size_t inputChannels : {7}) {
              for (size_t outputChannels : {7}) {
                size_t stride = 1;
                size_t padding = 0;
X
xzl 已提交
161
                size_t dilation = 1;
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                size_t outputHeight =
                    (inputHeight - filterHeight + 2 * padding + stride) /
                    stride;
                size_t outputWidth =
                    (inputWidth - filterWidth + 2 * padding + stride) / stride;
                VLOG(3) << " batchSize=" << batchSize
                        << " inputChannels=" << inputChannels
                        << " inputHeight=" << inputHeight
                        << " inputWidth=" << inputWidth
                        << " outputChannels=" << outputChannels
                        << " filterHeight=" << filterHeight
                        << " filterWidth=" << filterWidth
                        << " outputHeight=" << outputHeight
                        << " outputWidth=" << outputWidth
                        << " stride=" << stride << " padding=" << padding;

                std::vector<size_t> paddings = {padding, padding};
                std::vector<size_t> strides = {stride, stride};
X
xzl 已提交
180
                std::vector<size_t> dilations = {dilation, dilation};
181 182 183 184 185 186 187
                Compare2Function<DType1, DType2> test(
                    conv1,
                    conv2,
                    FuncConfig()
                        .set("paddings", paddings)
                        .set("strides", strides)
                        .set("groups", (size_t)1)
X
xzl 已提交
188
                        .set("dilations", dilations)
H
hedaoyuan 已提交
189
                        .set("algo", (std::string) "auto"));
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

                TensorShape input{
                    batchSize, inputChannels, inputHeight, inputWidth};
                TensorShape filter{
                    outputChannels, inputChannels, filterHeight, filterWidth};
                TensorShape output{
                    batchSize, outputChannels, outputHeight, outputWidth};

                function(test, input, filter, output);
              }
            }
          }
        }
      }
    }
  }
}

/**
 * \brief A convolution function test interface for depthwise convolution.
 */
template <DeviceType DType1, DeviceType DType2>
void DepthwiseConvolution(const std::string& conv1,
                          const std::string& conv2,
                          Function<DType1, DType2> function) {
  for (size_t batchSize : {1, 32}) {
    for (size_t inputSize : {7, 14, 54}) {
      for (size_t filterSize : {3, 4}) {
        for (size_t inputChannels : {32}) {
          for (size_t outputChannels : {32, 64}) {
            for (size_t stride : {1, 2}) {
              for (size_t padding : {0, 1}) {
H
hedaoyuan 已提交
222 223
                // NNPACK only supports stride = 1 if batchSize > 1,
                // and there has some bug when batchSize > 1 and groups != 1
H
hedaoyuan 已提交
224
                if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
H
hedaoyuan 已提交
225
                    batchSize > 1)
H
hedaoyuan 已提交
226 227
                  break;

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
                size_t outputSize =
                    (inputSize - filterSize + 2 * padding + stride) / stride;
                VLOG(3) << " batchSize=" << batchSize
                        << " inputChannels=" << inputChannels
                        << " inputHeight=" << inputSize
                        << " inputWidth=" << inputSize
                        << " outputChannels=" << outputChannels
                        << " filterHeight=" << filterSize
                        << " filterWidth=" << filterSize
                        << " outputHeight=" << outputSize
                        << " outputWidth=" << outputSize << " stride=" << stride
                        << " padding=" << padding;

                std::vector<size_t> paddings = {padding, padding};
                std::vector<size_t> strides = {stride, stride};
X
xzl 已提交
243
                std::vector<size_t> dilations = {1, 1};
244 245 246 247 248 249 250 251
                size_t groups = inputChannels;
                Compare2Function<DType1, DType2> test(
                    conv1,
                    conv2,
                    FuncConfig()
                        .set("paddings", paddings)
                        .set("strides", strides)
                        .set("groups", groups)
X
xzl 已提交
252
                        .set("dilations", dilations)
H
hedaoyuan 已提交
253
                        .set("algo", (std::string) "auto"));
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

                TensorShape input{
                    batchSize, inputChannels, inputSize, inputSize};
                TensorShape filter{groups,
                                   outputChannels / groups,
                                   inputChannels / groups,
                                   filterSize,
                                   filterSize};
                TensorShape output{
                    batchSize, outputChannels, outputSize, outputSize};

                function(test, input, filter, output);
              }
            }
          }
        }
      }
    }
  }
}

}  // namespace paddle