box_coder_op.cc 5.2 KB
Newer Older
G
gaoyuan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/box_coder_op.h"
G
gaoyuan 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class BoxCoderOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("PriorBox"),
                   "Input(PriorBox) of BoxCoderOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("PriorBoxVar"),
                   "Input(PriorBoxVar) of BoxCoderOp should not be null.");
G
gaoyuan 已提交
27
    PADDLE_ENFORCE(ctx->HasInput("TargetBox"),
G
gaoyuan 已提交
28
                   "Input(TargetBox) of BoxCoderOp should not be null.");
G
gaoyuan 已提交
29 30
    PADDLE_ENFORCE(ctx->HasOutput("OutputBox"),
                   "Output(OutputBox) of BoxCoderOp should not be null.");
G
gaoyuan 已提交
31 32 33 34 35

    auto prior_box_dims = ctx->GetInputDim("PriorBox");
    auto prior_box_var_dims = ctx->GetInputDim("PriorBoxVar");
    auto target_box_dims = ctx->GetInputDim("TargetBox");

G
gaoyuan 已提交
36 37 38 39 40 41 42
    PADDLE_ENFORCE_EQ(prior_box_dims.size(), 2,
                      "The rank of Input of PriorBoxVar must be 2");
    PADDLE_ENFORCE_EQ(prior_box_dims[1], 4, "The shape of PriorBox is [N, 4]");
    PADDLE_ENFORCE_EQ(prior_box_dims, prior_box_var_dims);
    PADDLE_ENFORCE_EQ(target_box_dims.size(), 2,
                      "The rank of Input of TargetBox must be 2");
    PADDLE_ENFORCE_EQ(target_box_dims[1], 4,
G
gaoyuan 已提交
43 44 45 46
                      "The shape of TargetBox is [M, 4]");

    GetBoxCodeType(ctx->Attrs().Get<std::string>("code_type"));

G
gaoyuan 已提交
47 48 49 50
    ctx->SetOutputDim(
        "OutputBox",
        framework::make_ddim({target_box_dims[0], prior_box_dims[0], 4}));
    ctx->ShareLoD("TargetBox", /*->*/ "OutputBox");
G
gaoyuan 已提交
51 52 53 54 55 56 57 58 59 60
  }
};

class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  BoxCoderOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "PriorBox",
        "(Tensor, default Tensor<float>) "
G
gaoyuan 已提交
61
        "Box list PriorBox is a 2-D Tensor with shape [M, 4] holds M boxes, "
G
gaoyuan 已提交
62 63 64 65 66 67 68
        "each box is represented as [xmin, ymin, xmax, ymax], "
        "[xmin, ymin] is the left top coordinate of the anchor box, "
        "if the input is image feature map, they are close to the origin "
        "of the coordinate system. [xmax, ymax] is the right bottom "
        "coordinate of the anchor box.");
    AddInput("PriorBoxVar",
             "(Tensor, default Tensor<float>) "
G
gaoyuan 已提交
69
             "PriorBoxVar is a 2-D Tensor with shape [M, 4] holds M group "
G
gaoyuan 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
             "of variance.");
    AddInput(
        "TargetBox",
        "(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
        "[N, 4], each box is represented as [xmin, ymin, xmax, ymax], "
        "[xmin, ymin] is the left top coordinate of the box if the input "
        "is image feature map, they are close to the origin of the coordinate "
        "system. [xmax, ymax] is the right bottom coordinate of the box. "
        "This tensor can contain LoD information to represent a batch "
        "of inputs. One instance of this batch can contain different "
        "numbers of entities.");
    AddAttr<std::string>("code_type",
                         "(string, default encode_center_size) "
                         "the code type used with the target box")
        .SetDefault("encode_center_size")
        .InEnum({"encode_center_size", "decode_center_size"});
    AddOutput(
        "OutputBox",
G
gaoyuan 已提交
88
        "(LoDTensor or Tensor) "
G
gaoyuan 已提交
89 90 91 92 93 94
        "(Tensor) The output of box_coder_op, a tensor with shape [N, M, 4] "
        "representing the result of N target boxes encoded/decoded with "
        "M Prior boxes and variances.");

    AddComment(R"DOC(
Bounding Box Coder Operator.
G
gaoyuan 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
Encode/Decode the target bounding box with the priorbox information.
The Encoding schema described below:
ox = (tx - px) / pw / pxv
oy = (ty - py) / ph / pyv
ow = log(abs(tw / pw)) / pwv 
oh = log(abs(th / ph)) / phv 
The Decoding schema described below:
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2
ow = exp(pwv * tw) * pw + tw / 2
oh = exp(phv * th) * ph + th / 2
where tx, ty, tw, th denote the target box's center coordinates, width and
height respectively. Similarly, px, py, pw, ph denote the priorbox's(anchor)
center coordinates, width and height. pxv, pyv, pwv, phv denote the variance
of the priorbox and ox, oy, ow, oh denote the encoded/decoded coordinates,
width and height.
G
gaoyuan 已提交
111 112 113 114 115 116 117 118 119 120 121
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker);
REGISTER_OP_CPU_KERNEL(box_coder, ops::BoxCoderKernel<float>,
                       ops::BoxCoderKernel<double>);