fused_attention_grad_kernel.cu 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sparse/fused_attention_grad_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"
#include "paddle/phi/kernels/funcs/sparse/sparse_blas.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/sparse/matmul_grad_kernel.h"

namespace phi {
namespace sparse {

template <typename T>
__global__ void AttnSoftmaxGpuGradKernel(const int64_t* out_crows,
                                         const T* out_values,
                                         const T* dout_values,
                                         T* dx_values,
                                         int M,
                                         int total_row_num,
                                         float scale,
                                         int batch_nnz) {
  // dx = (dout - sum(dout * out)) * out
  int row = blockIdx.x * blockDim.y + threadIdx.y;
  if (row >= total_row_num) return;

  int cur_batch = row / M;
  int crow_idx = cur_batch * (M + 1) + (row % M);
  int row_first = cur_batch * batch_nnz + static_cast<int>(out_crows[crow_idx]);
  int row_nnz = static_cast<int>(out_crows[crow_idx + 1] - out_crows[crow_idx]);
  if (row_nnz == 0) return;

46 47 48
  T mul = 0;
  for (int idx = threadIdx.x; idx < row_nnz; idx += blockDim.x) {
    mul += out_values[row_first + idx] * dout_values[row_first + idx];
49
  }
50
  T mul_sum = phi::funcs::warpReduceSum<T>(mul, 0xFFFFFFFF);
51

52 53
  for (int idx = threadIdx.x; idx < row_nnz; idx += blockDim.x) {
    dx_values[row_first + idx] = (dout_values[row_first + idx] - mul_sum) *
54 55 56 57 58 59 60 61 62 63 64 65 66 67
                                 out_values[row_first + idx] / scale;
  }
}

template <typename T, typename Context>
void FusedAttentionCsrGradKernel(const Context& dev_ctx,
                                 const DenseTensor& query,
                                 const DenseTensor& key,
                                 const DenseTensor& value,
                                 const SparseCsrTensor& softmax,
                                 const DenseTensor& dout,
                                 DenseTensor* dquery,
                                 DenseTensor* dkey,
                                 DenseTensor* dvalue) {
68
#if CUDA_VERSION >= 11080
69 70
  /* Step1: Forward: softmax{CSR} * value{Dense} -> out{Dense}, reuse */
  SparseCsrTensor dsoftmax;
71
  MatmulCsrDenseGradKernel<T, Context>(
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
      dev_ctx, softmax, value, dout, &dsoftmax, dvalue);

  /* Step2: Calculate grad of sdd_result, manualy not reuse */
  SparseCsrTensor d_sdd_result;
  EmptyLikeCsrKernel<T, Context>(dev_ctx, dsoftmax, &d_sdd_result);
  auto q_dim = query.dims();
  auto q_rank = q_dim.size();

  int total_row_num = 1;
  int batch_num = 1;
  for (int i = 0; i < q_rank - 1; ++i) {
    total_row_num *= q_dim[i];
    if (i < q_rank - 2) {
      batch_num *= q_dim[i];
    }
  }
  int M = q_dim[q_rank - 2];
  int N = q_dim[q_rank - 1];
  int batch_nnz = softmax.nnz() / batch_num;

92 93
  dim3 grid((total_row_num + 7) / 8);
  dim3 block(WARP_SIZE, 8);
94 95

  AttnSoftmaxGpuGradKernel<T><<<grid, block, 0, dev_ctx.stream()>>>(
96
      softmax.crows().data<int64_t>(),
97 98 99
      softmax.values().data<T>(),
      dsoftmax.mutable_values()->data<T>(),
      d_sdd_result.mutable_values()->data<T>(),
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
      M,
      total_row_num,
      std::sqrt(N),
      batch_nnz);

  /* Step3: Forward: query{Dense} * key'{Dense} -> sdd_result{SparseCsr} */
  auto sparse_blas = phi::funcs::sparse::GetSparseBlas<Context, T>(dev_ctx);
  // dquery{Dense} = d_sdd_result{SparseCsr} * key{Dense} //
  dquery->Resize(query.dims());
  dev_ctx.template Alloc<T>(dquery);
  sparse_blas.SPMM(false,
                   false,
                   static_cast<T>(1.f),
                   d_sdd_result,
                   key,
                   static_cast<T>(0.f),
                   dquery);

  // dkey{Dense} = d_sdd_result'{SparseCsr} * query{Dense} //
  dkey->Resize(key.dims());
  dev_ctx.template Alloc<T>(dkey);
  sparse_blas.SPMM(true,
                   false,
                   static_cast<T>(1.f),
                   d_sdd_result,
                   query,
                   static_cast<T>(0.f),
                   dkey);
#else
  PADDLE_THROW(
      phi::errors::Unimplemented("backward of 'sparse.nn.functional.attention' "
                                 "use 'cusparseCsrSetStridedBatch', which is "
132
                                 "completed supported from CUDA 11.8"));
133 134 135 136 137 138 139 140 141 142 143 144 145 146
#endif
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(fused_attention_csr_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::FusedAttentionCsrGradKernel,
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}