device_context.cc 11.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
11
#include "paddle/fluid/platform/device_context.h"
12
#include <set>
13
#include <string>
Y
Yu Yang 已提交
14
#include <unordered_set>
15 16
#include <vector>

Y
Yi Wang 已提交
17
#include "paddle/fluid/memory/memory.h"
18 19
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/platform/cuda_device_guard.h"
21
#endif
22

Q
qijun 已提交
23 24 25
namespace paddle {
namespace platform {

D
dzhwinter 已提交
26 27
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
28
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
29 30 31 32 33 34
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
        "'Place' is not supported, Please re-compile with WITH_GPU "
        "option");
  }
Y
Yu Yang 已提交
35
  return it->second.get();
D
dzhwinter 已提交
36 37
}

C
chengduozh 已提交
38 39 40 41 42 43 44 45 46 47
const std::vector<const DeviceContext*>
DeviceContextPool::GetAllDeviceContexts() const {
  std::vector<const DeviceContext*> all_device_ctx;
  all_device_ctx.reserve(device_contexts_.size());
  for (auto& dev_ctx : device_contexts_) {
    all_device_ctx.emplace_back(dev_ctx.second.get());
  }
  return all_device_ctx;
}

D
dzhwinter 已提交
48 49 50
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
Y
Yu Yang 已提交
51
  using PtrType = std::unique_ptr<DeviceContext>;
52
  std::set<Place> set;
Y
Yu Yang 已提交
53 54 55 56 57 58
  for (auto& p : places) {
    set.insert(p);
  }

  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
59
#ifdef PADDLE_WITH_MKLDNN
Y
Yu Yang 已提交
60 61
      device_contexts_.emplace(
          p, PtrType(new MKLDNNDeviceContext(boost::get<CPUPlace>(p))));
62
#else
Y
Yu Yang 已提交
63 64
      device_contexts_.emplace(
          p, PtrType(new CPUDeviceContext(boost::get<CPUPlace>(p))));
65
#endif
Y
Yu Yang 已提交
66
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
67
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
68 69
      device_contexts_.emplace(
          p, PtrType(new CUDADeviceContext(boost::get<CUDAPlace>(p))));
D
dzhwinter 已提交
70 71
#else
      PADDLE_THROW(
D
dzhwinter 已提交
72
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
73
          "option");
C
chengduoZH 已提交
74 75 76 77 78 79 80 81 82 83
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
      device_contexts_.emplace(
          p,
          PtrType(new CUDAPinnedDeviceContext(boost::get<CUDAPinnedPlace>(p))));
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
84 85 86 87 88
#endif
    }
  }
}

89 90 91 92
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
93
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
94 95 96 97 98 99 100
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
101
Place CPUDeviceContext::GetPlace() const { return place_; }
102

103
#ifdef PADDLE_WITH_CUDA
104

Q
init  
qijun 已提交
105 106 107 108 109 110 111
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
112
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
113 114 115 116 117 118 119 120 121 122 123 124
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
Y
Yu Yang 已提交
125 126
    auto buf = paddle::memory::Alloc(place_, num_bytes,
                                     memory::Allocator::kScratchpad);
127 128 129
    void* retv = buf->ptr();
    allocations_[buf->ptr()] = std::move(buf);
    return retv;
Q
init  
qijun 已提交
130 131 132
  }

  void deallocate(void* buffer) const override {
133
    allocations_.erase(allocations_.find(buffer));
Q
init  
qijun 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  }

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
155
  CUDAPlace place_;
Q
init  
qijun 已提交
156 157
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
158
  mutable void* scratch_;
Q
init  
qijun 已提交
159
  mutable unsigned int* semaphore_;
160 161
  mutable std::unordered_map<void*, std::unique_ptr<memory::Allocation>>
      allocations_;
Q
init  
qijun 已提交
162 163
};

164 165 166
class CudnnHolder {
 public:
  CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
167
      : workspace_(nullptr), stream_(stream), place_(place) {
168 169 170 171 172 173 174 175 176
    PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
    PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
  }

  cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }

  void RunFunc(const std::function<void(void*)>& cudnn_func,
               size_t required_workspace_len) {
    std::lock_guard<std::mutex> lock(mtx_);
177
    if (required_workspace_len > WorkspaceSize()) {
178 179
      ReallocateWorkspace(required_workspace_len);
    }
Y
Yu Yang 已提交
180
    cudnn_func(WorkspacePtr());
181 182
  }

183 184 185 186 187 188 189 190
  ~CudnnHolder() { PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); }

 private:
  size_t WorkspaceSize() const {
    if (workspace_ == nullptr) {
      return 0;
    } else {
      return workspace_->size();
191 192 193
    }
  }

Y
Yu Yang 已提交
194 195 196 197 198 199 200 201
  void* WorkspacePtr() const {
    if (workspace_ == nullptr) {
      return nullptr;
    } else {
      return workspace_->ptr();
    }
  }

202
  void ReallocateWorkspace(size_t required_workspace_len) {
203
    if (required_workspace_len <= WorkspaceSize()) {
204 205 206 207 208
      return;
    }
    if (workspace_ != nullptr) {
      // Maybe someone is using the current workspace
      PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
209
      workspace_.reset();
210
    }
211 212
    workspace_ = paddle::memory::Alloc(place_, required_workspace_len,
                                       memory::Allocator::kFluxHuge);
213 214 215
  }

  cudnnHandle_t cudnn_handle_;
216
  std::unique_ptr<memory::Allocation> workspace_;
217 218 219 220 221 222 223 224 225

  const cudaStream_t* stream_;  // not owned;
  const CUDAPlace place_;

  std::mutex mtx_;
};

CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
Y
Yu Yang 已提交
226
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
227 228 229
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
230 231 232
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
233
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
234 235
  PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
  PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
D
dzhwinter 已提交
236
  if (dynload::HasCUDNN()) {
237
    cudnn_holder_.reset(new CudnnHolder(&stream_, place));
D
dzhwinter 已提交
238
  }
S
sneaxiy 已提交
239

C
chengduo 已提交
240 241 242 243 244 245 246 247 248 249
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

  LOG(INFO) << "device: " << place_.device
            << ", CUDA Capability: " << compute_capability_
            << ", Driver Version: " << driver_version_ / 1000 << "."
            << (driver_version_ % 100) / 10
            << ", Runtime Version: " << runtime_version_ / 1000 << "."
            << (runtime_version_ % 100) / 10;

S
sneaxiy 已提交
250
  callback_manager_.reset(new StreamCallbackManager(stream_));
251 252 253 254
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
255
  Wait();
S
sneaxiy 已提交
256
  WaitStreamCallback();
257
  PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
258 259
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
260
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
261 262
}

L
liaogang 已提交
263
Place CUDADeviceContext::GetPlace() const { return place_; }
264

L
liaogang 已提交
265
void CUDADeviceContext::Wait() const {
Q
init  
qijun 已提交
266
  PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
267 268 269
  PADDLE_ENFORCE(cudaGetLastError());
}

K
Kexin Zhao 已提交
270
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
271
  return compute_capability_;
K
Kexin Zhao 已提交
272 273
}

274
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
275
  return multi_process_ * max_threads_per_mp_;
276 277
}

278 279 280 281
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

282
cublasHandle_t CUDADeviceContext::cublas_handle() const {
283 284 285
  return cublas_handle_;
}

286 287 288 289 290 291 292 293
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return cudnn_holder_->cudnn_handle();
}

void CUDADeviceContext::RunCudnnFuncWithWorkspace(
    const std::function<void(void*)>& cudnn_func, size_t workspace_len) const {
  cudnn_holder_->RunFunc(cudnn_func, workspace_len);
}
294

295
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
296

C
chengduoZH 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
311
#endif
Q
qijun 已提交
312

T
tensor-tang 已提交
313 314
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
315 316 317
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
318 319
}

S
Sylwester Fraczek 已提交
320 321 322 323 324 325 326 327
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
}

void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

328 329
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
330 331 332 333
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
334

335
  std::lock_guard<std::mutex> lock(*p_mutex_.get());
T
tensor-tang 已提交
336

337 338 339 340 341 342 343
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
344
  } else {
345
    pBlob = map_it->second;
346
  }
T
tensor-tang 已提交
347

348 349 350 351 352 353 354 355 356 357
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
  } else {
    key_it->second = data;  // set data to existing blob
  }

  // lock will be automatically released when out of scope
358
  return;
T
tensor-tang 已提交
359 360
}

361 362
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
363 364
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
365

366
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
367

368 369 370 371 372 373 374 375 376 377 378
  std::lock_guard<std::mutex> lock(*p_mutex_.get());

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
379

380 381
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
382 383 384 385
}

#endif

Q
qijun 已提交
386
}  // namespace platform
Q
qijun 已提交
387
}  // namespace paddle