beam_search_decode_op.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
16
#include <string>
17 18

#include "paddle/fluid/operators/beam_search_decode_op.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/platform/device_context.h"
Q
Qiao Longfei 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26
struct BeamSearchDecodeFunctor {
  BeamSearchDecodeFunctor(const LoDTensorArray& step_ids,
                          const LoDTensorArray& step_scores,
27 28 29 30 31
                          LoDTensor* id_tensor, LoDTensor* score_tensor,
                          size_t beam_size, int end_id)
      : beam_size_(beam_size),
        end_id_(end_id),
        step_ids_origin_(step_ids),
32
        step_scores_origin_(step_scores),
33
        id_tensor_(id_tensor),
34 35 36 37 38 39 40 41 42 43 44
        score_tensor_(score_tensor) {
    tensor_on_gpu_ = false;
    // First make a copy of GPU data on CPU
    if (platform::is_gpu_place(step_ids_origin_[0].place())) {
      tensor_on_gpu_ = true;
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_ids_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_id : step_ids_origin_) {
        framework::LoDTensor out;
45 46 47 48 49
        if (step_id.numel() > 0) {
          dev_ctx->Wait();
          framework::TensorCopy(step_id, platform::CPUPlace(), *dev_ctx, &out);
          dev_ctx->Wait();
        }
50 51 52 53 54 55 56 57 58 59 60 61 62

        out.set_lod(step_id.lod());
        step_ids_.push_back(out);
      }
    }
    if (platform::is_gpu_place(step_scores_origin_[0].place())) {
      tensor_on_gpu_ = true;
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto* dev_ctx = pool.Get(step_scores_origin_[0].place());
      // Copy all tensors in the input tensor array
      for (auto& step_score : step_scores_origin_) {
        framework::LoDTensor out;
63 64 65 66 67 68
        if (step_score.numel() > 0) {
          dev_ctx->Wait();
          framework::TensorCopy(step_score, platform::CPUPlace(), *dev_ctx,
                                &out);
          dev_ctx->Wait();
        }
69 70 71 72 73 74

        out.set_lod(step_score.lod());
        step_scores_.push_back(out);
      }
    }
  }
75 76

  template <typename T>
D
dzhwinter 已提交
77
  void apply() const;
78

79
  bool tensor_on_gpu_;
80 81
  size_t beam_size_;
  int end_id_;
Y
Yan Chunwei 已提交
82 83 84
  // TODO(Superjomn) Here might result serious performance issue in the
  // concurrency
  // scenarios.
85 86 87 88
  const LoDTensorArray& step_ids_origin_;
  const LoDTensorArray& step_scores_origin_;
  LoDTensorArray step_ids_ = LoDTensorArray();
  LoDTensorArray step_scores_ = LoDTensorArray();
89 90 91 92 93
  LoDTensor* id_tensor_;
  LoDTensor* score_tensor_;
};

template <typename T>
D
dzhwinter 已提交
94
void BeamSearchDecodeFunctor::apply() const {
95
  BeamSearchDecoder<T> beam_search_decoder(beam_size_, end_id_);
96 97
  // Check if the tensor is on GPU. If so, use the CPU copy instead
  if (tensor_on_gpu_) {
98 99
    beam_search_decoder.Backtrace(step_ids_, step_scores_, id_tensor_,
                                  score_tensor_);
100
  } else {
101 102
    beam_search_decoder.Backtrace(step_ids_origin_, step_scores_origin_,
                                  id_tensor_, score_tensor_);
103
  }
104 105 106
}

template <>
D
dzhwinter 已提交
107
void BeamSearchDecodeFunctor::apply<bool>() const {
108 109 110
  PADDLE_THROW("beam search decode op does not support bool!");
}

Q
Qiao Longfei 已提交
111 112 113 114 115 116 117
class BeamSearchDecodeOp : public framework::OperatorBase {
 public:
  BeamSearchDecodeOp(const std::string& type,
                     const framework::VariableNameMap& inputs,
                     const framework::VariableNameMap& outputs,
                     const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
118 119 120 121

 private:
  void RunImpl(const framework::Scope& scope,
               const platform::Place& dev_place) const override {
Y
Yu Yang 已提交
122 123
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
124

Q
Qiao Longfei 已提交
125
    framework::ExecutionContext ctx(*this, scope, dev_ctx);
126

Q
Qiao Longfei 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
    const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids");
    const LoDTensorArray* scores = ctx.Input<LoDTensorArray>("Scores");
    const size_t step_num = ids->size();
    PADDLE_ENFORCE_GT(step_num, 0UL,
                      "beam search steps should be larger than 0");
    const size_t source_num = ids->at(0).lod().at(0).size() - 1;
    PADDLE_ENFORCE_GT(source_num, 0UL, "source num should be larger than 0");

    for (size_t i = 0; i < step_num; ++i) {
      PADDLE_ENFORCE_EQ(ids->at(i).lod().size(), 2UL,
                        "Level of LodTensor should be 2");
    }

140 141 142
    size_t beam_size = ctx.Attr<int>("beam_size");
    int end_id = ctx.Attr<int>("end_id");

Q
Qiao Longfei 已提交
143 144 145 146
    // prepare output
    LoDTensor* sentenceIds = ctx.Output<LoDTensor>("SentenceIds");
    LoDTensor* sentenceScores = ctx.Output<LoDTensor>("SentenceScores");

147 148
    framework::VisitDataType(
        framework::ToDataType(scores->at(0).type()),
149 150
        BeamSearchDecodeFunctor(*ids, *scores, sentenceIds, sentenceScores,
                                beam_size, end_id));
Q
Qiao Longfei 已提交
151 152 153 154 155
  }
};

class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
156
  void Make() override {
Q
Qiao Longfei 已提交
157 158
    AddInput("Ids",
             "(LodTensorArray)"
159
             "The LodTensorArray containing the selected ids of all steps");
Q
Qiao Longfei 已提交
160 161
    AddInput("Scores",
             "(LodTensorArray)"
162 163 164 165 166 167 168 169 170 171
             "The LodTensorArray containing the selected scores of all steps");
    AddOutput(
        "SentenceIds",
        "(LodTensor)"
        "An LodTensor containing all generated id sequences for all source "
        "sentences");
    AddOutput(
        "SentenceScores",
        "(LodTensor)"
        "An LodTensor containing scores corresponding to Output(SentenceIds)");
172 173 174
    AddAttr<int>("beam_size", "beam size for beam search");
    AddAttr<int>("end_id",
                 "the token id which indicates the end of a sequence");
Q
Qiao Longfei 已提交
175
    AddComment(R"DOC(
176 177 178 179 180 181 182 183 184
Beam Search Decode Operator. This Operator constructs the full hypotheses for
each source sentence by walking back along the LoDTensorArray Input(ids)
whose lods can be used to restore the path in the beam search tree.

The Output(SentenceIds) and Output(SentenceScores) separately contain the 
generated id sequences and the corresponding scores. The shapes and lods of the 
two LodTensor are same. The lod level is 2 and the two levels separately 
indicate how many hypotheses each source sentence has and how many ids each 
hypothesis has.
Q
Qiao Longfei 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
)DOC");
  }
};

class BeamSearchDecodeInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* context) const override {
    PADDLE_ENFORCE(context->HasInput("Ids"),
                   "BeamSearchDecodeOp must has input Ids");
    PADDLE_ENFORCE(context->HasInput("Scores"),
                   "BeamSearchDecodeOp must has input Scores");
    PADDLE_ENFORCE(context->HasOutput("SentenceIds"),
                   "BeamSearchDecodeOp must has output SentenceIds");
    PADDLE_ENFORCE(context->HasOutput("SentenceScores"),
                   "BeamSearchDecodeOp must has output SentenceScores");
  }
};

class BeamSearchDecodeInferVarType : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
205 206
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
Q
Qiao Longfei 已提交
207
    for (auto& o : op_desc.Output("SentenceIds")) {
208 209
      auto& sentence_ids = block->FindRecursiveOrCreateVar(o);
      sentence_ids.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
210 211
    }
    for (auto& o : op_desc.Output("SentenceScores")) {
212 213
      auto& sentence_scores = block->FindRecursiveOrCreateVar(o);
      sentence_scores.SetType(framework::proto::VarType::LOD_TENSOR);
Q
Qiao Longfei 已提交
214 215 216 217 218 219 220 221 222 223 224 225
    }
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(beam_search_decode, paddle::operators::BeamSearchDecodeOp,
                  paddle::operators::BeamSearchDecodeOpProtoMaker,
                  paddle::operators::BeamSearchDecodeInferShape,
                  paddle::operators::BeamSearchDecodeInferVarType,
                  paddle::framework::EmptyGradOpMaker);