conv_fusion_op.cu 14.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
Q
qingqing01 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
18 19
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/operators/math/padding.h"
20
#include "paddle/fluid/platform/cudnn_helper.h"
Q
qingqing01 已提交
21

22
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
23 24 25 26

namespace paddle {
namespace operators {

H
hjchen2 已提交
27
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
28 29 30 31 32 33
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
34 35
using framework::AlgorithmsCache;

Q
qingqing01 已提交
36 37 38 39 40 41 42 43 44 45 46
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
47
    PADDLE_ENFORCE_NOT_NULL(bias, "The bias should not be null.");
Q
qingqing01 已提交
48 49
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");
50
    output->mutable_data<T>(ctx.GetPlace());
Q
qingqing01 已提交
51 52 53 54 55 56 57 58 59 60 61

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

62
    // const T* input_data = input->data<T>();
Q
qingqing01 已提交
63 64
    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
65 66 67 68 69 70 71 72 73 74 75 76 77
    // T* output_data = output->mutable_data<T>(ctx.GetPlace());

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    Tensor transformed_input_channel(input->type());
    Tensor transformed_output(output->type());
    T* output_data = nullptr;

    transformed_input_channel = *input;
    transformed_output = *output;
    output_data = transformed_output.data<T>();
Q
qingqing01 已提交
78
    const T* residual_data = residual ? residual->data<T>() : output_data;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
          PADDLE_THROW("ConvOp only support tensors with 4 or 5 dimensions.");
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
166
        conv_desc.descriptor<T>(padding_common, strides, dilations);
167 168 169
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSetConvolutionGroupCount(cudnn_conv_desc,
                                                         groups));
Q
qingqing01 已提交
170 171

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
172
        layout, framework::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
173
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
174
        layout, framework::vectorize<int>(transformed_output.dims()));
Q
qingqing01 已提交
175
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
176
        layout, framework::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
177
    // Now only support NCHW
178 179
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
180 181 182 183 184 185 186
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
187
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
188 189
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
190
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
191 192 193 194 195 196 197
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
198
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
Q
qingqing01 已提交
199

200
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
Q
qingqing01 已提交
201 202
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));

203
    auto x_dims = framework::vectorize(transformed_input.dims());
Q
qingqing01 已提交
204
    auto f_dims = framework::vectorize(filter->dims());
205
    if (!exhaustive_search) {
206 207 208 209 210
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
Q
qingqing01 已提交
211 212
      VLOG(3) << "cuDNN forward algo " << algo;
    } else {
213 214
      std::function<cudnnConvolutionFwdAlgo_t()> search_func =
          [&]() -> cudnnConvolutionFwdAlgo_t {
Q
qingqing01 已提交
215 216 217
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
218
        auto cudnn_find_func = [&](void* cudnn_workspace) {
219
          PADDLE_ENFORCE_CUDA_SUCCESS(
C
chengduo 已提交
220 221 222 223 224 225
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                  handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                  filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
                  kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                  fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit));
        };
226
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
227 228 229 230 231 232 233 234
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
235
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
236
          ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>(0);
Q
qingqing01 已提交
237 238 239
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
240
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
241 242 243 244
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
245 246
        algo = algo_cache.GetAlgorithm(x_dims[2] * x_dims[3], search_times, 0,
                                       search_func);
Q
qingqing01 已提交
247
      } else {
248
        algo = algo_cache.GetAlgorithm(x_dims, f_dims, strides, paddings,
249
                                       dilations, 0, search_func);
Q
qingqing01 已提交
250 251 252 253
      }
      VLOG(3) << "choose algo " << algo;
    }

254 255 256 257
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
            cudnn_output_desc, algo, &workspace_size_in_bytes));
Q
qingqing01 已提交
258 259 260
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

N
nhzlx 已提交
261
    if ((activation == "identity") && (!residual)) {
262 263 264 265 266 267
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
268
      auto cudnn_func = [&](void* cudnn_workspace) {
269
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnConvolutionForward(
C
chengduo 已提交
270 271 272 273 274
            handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, cudnn_workspace,
            workspace_size_in_bytes, &beta, cudnn_output_desc, output_data));
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
275
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnAddTensor(
276
          handle, &alpha, cudnn_bias_desc, bias_data, &alpha, cudnn_output_desc,
Q
qingqing01 已提交
277
          output_data));
278 279 280 281 282 283 284
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
285
      auto cudnn_func = [&](void* cudnn_workspace) {
286 287 288 289 290 291 292
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha1, cudnn_input_desc, input_data,
                cudnn_filter_desc, filter_data, cudnn_conv_desc, algo,
                cudnn_workspace, workspace_size_in_bytes, &alpha2,
                cudnn_output_desc, residual_data, cudnn_bias_desc, bias_data,
                cudnn_act_desc, cudnn_output_desc, output_data));
C
chengduo 已提交
293 294
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
295
    }
Q
qingqing01 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
        PADDLE_THROW("Batch size greater than 1 is Unsupported");
      }
    }
Q
qingqing01 已提交
317 318
  }
};
D
Dang Qingqing 已提交
319
#endif
Q
qingqing01 已提交
320 321 322 323

}  // namespace operators
}  // namespace paddle

H
hjchen2 已提交
324
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
325 326 327
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>,
                        ops::CUDNNConvFusionOpKernel<double>);
D
Dang Qingqing 已提交
328
#endif