elementwise_op_function.h 51.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <functional>  // for multiplies
D
dzhwinter 已提交
21
#include <iterator>
22
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
27
#include "paddle/fluid/memory/malloc.h"
28
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
29
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/transform.h"
31

32
#include "paddle/pten/api/lib/utils/tensor_utils.h"
33
#include "paddle/pten/kernels/cpu/elementwise.h"
34

35
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduoZH 已提交
36
#ifdef __NVCC__
37
#include <cuda.h>
38 39 40
#elif defined(__HIPCC__)
#include <hip/hip_runtime.h>
#endif
C
chengduoZH 已提交
41
#include <thrust/iterator/iterator_adaptor.h>
42

43
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
44
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
45 46
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
47

C
chengduoZH 已提交
48 49
#endif

Y
Yi Wang 已提交
50
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/platform/for_range.h"
52

53 54 55 56
#define DIVUP(x, y) (((x) + (y)-1) / (y))

#define ROUNDUP(x, y) (DIVUP((x), (y)) * (y))

57 58 59
namespace paddle {
namespace operators {

60
/*
61 62 63 64 65 66 67
*  Pack input and output tensors into respective vectors with
*  consideration of varible X`s class type.
*  Input variable X is supported to be whether LoDTensor or
*  SelectedRows class type in this package function, once X
*  was SelectedRows type, a valid pointer x_for_selectedrows
*  is excepted to be passed in from op kernel for acquisition
*  of the valid address of LoDTensor created ahead in the function.
68
*/
69 70 71
template <typename OutT>
int PackTensorsIntoVector(const framework::ExecutionContext &ctx,
                          std::vector<const framework::Tensor *> *ins,
72 73
                          std::vector<framework::Tensor *> *outs,
                          framework::Tensor *x_for_selectedrows = nullptr) {
74
  int axis = -1;
75 76 77 78 79
  auto x_var = ctx.InputVar("X");
  PADDLE_ENFORCE_NOT_NULL(
      x_var, platform::errors::InvalidArgument(
                 "Unable to get input Variable X, Variable name is %s.\n",
                 ctx.InputName("X")));
80
  auto *y = ctx.Input<framework::LoDTensor>("Y");
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  framework::Tensor *z;

  if (x_var->IsType<framework::LoDTensor>()) {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    z = ctx.Output<framework::LoDTensor>("Out");
    ins->emplace_back(x);
  } else if (x_var->IsType<framework::SelectedRows>()) {
    PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true,
                      platform::errors::InvalidArgument(
                          "For elementwise_op, if X is Sparse, Y must be "
                          "scalar. But reveived the size of Y = %d.",
                          y->dims().size()));
    PADDLE_ENFORCE_NOT_NULL(
        x_for_selectedrows,
        platform::errors::InvalidArgument(
            "The parameter x_for_selectedrows is excepted to "
            "be valid, once input varible X`s class type is "
            "SelectedRows.\n"));
    auto &x_sele = x_var->Get<framework::SelectedRows>();
    auto out_sele = ctx.Output<framework::SelectedRows>("Out");
    *x_for_selectedrows = x_sele.value();
    out_sele->set_rows(x_sele.rows());
    out_sele->set_height(x_sele.height());
    out_sele->mutable_value()->Resize(x_sele.value().dims());
    out_sele->mutable_value()->mutable_data(ctx.GetPlace(),
                                            x_for_selectedrows->type());
    z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    ins->emplace_back(x_for_selectedrows);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "X's type[%s] is not supported by elementwise_op. X's type should be "
        "LoDTensor or SelectedRows.",
        framework::ToTypeName(x_var->Type())));
  }
115
  z->mutable_data<OutT>(ctx.GetPlace());
116 117 118 119
  outs->emplace_back(z);

  if (y != nullptr) {
    ins->emplace_back(y);
120
    axis = ctx.HasAttr("axis") ? ctx.Attr<int>("axis") : -1;
121
  }
122
  return axis;
123 124
}

125 126 127 128 129
inline void GetBroadcastDimsArrays(const framework::DDim &x_dims,
                                   const framework::DDim &y_dims,
                                   int *x_dims_array, int *y_dims_array,
                                   int *out_dims_array, const int max_dim,
                                   const int axis) {
130 131 132
  pten::funcs::GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array,
                                      y_dims_array, out_dims_array, max_dim,
                                      axis);
133
}
134

135
inline framework::DDim trim_trailing_singular_dims(
136
    const framework::DDim &dims) {
137
  return pten::funcs::trim_trailing_singular_dims(dims);
138 139
}

F
Feiyu Chan 已提交
140 141
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          typename Tout = T>
142 143 144 145 146
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
                         const framework::Tensor &x, const framework::Tensor &y,
                         const framework::Tensor &out,
                         const framework::Tensor &dout, int axis,
                         framework::Tensor *dx, framework::Tensor *dy,
Y
Yu Yang 已提交
147
                         DX_OP dx_op, DY_OP dy_op) {
148 149
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
150
  const auto &dev_ctx = ctx.template device_context<DeviceContext>();
Y
Yu Yang 已提交
151
  if (x.dims() == y.dims()) {
152 153 154
    pten::funcs::ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP,
                                                Tout>(
        dev_ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
155
  } else {
156 157
    pten::ElemwiseGradComputeWithBroadcast<T, DX_OP, DY_OP, Tout>(
        dev_ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
158 159 160 161 162 163 164 165
  }
}

// NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub.
// explicit gradient can cut off X, Y, Out from gradient op
// In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse
// elementwise code.
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
166 167 168 169 170 171
void ElemwiseExplicitGradCompute(const framework::ExecutionContext &ctx,
                                 const framework::Tensor &x,
                                 const framework::Tensor &y,
                                 const framework::Tensor &out,
                                 const framework::Tensor &dout, int axis,
                                 framework::Tensor *dx, framework::Tensor *dy,
172
                                 DX_OP dx_op, DY_OP dy_op) {
173 174
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
175
  const auto &dev_ctx = ctx.template device_context<DeviceContext>();
176
  if (x.dims() == y.dims()) {
177 178 179
    pten::funcs::ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        dev_ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op,
        dy_op);
180
  } else {
181 182 183
    pten::ElemwiseGradComputeWithBroadcast<T, DX_OP, DY_OP>(
        dev_ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op,
        dy_op);
184 185
  }
}
F
fengjiayi 已提交
186

187 188 189 190
// It is a common implementation to compute binary calculation with the support
// of broadcast, supporting both CPU and GPU.
// - CPU implementation cannot support the case when x needs broadcast, thus
//   this function need to be called with XxxFunctor and XxxInverseFunctor,
191
//   like AddFunctor and InverseAddFunctor.
192 193 194 195
// - GPU implementation supports all the broadcast cases, thus there is no need
//   to define and call with XxxInverseFunctor.
// TODO(liuyiqun): optimize the CPU implementation to support all broadcast
// cases and avoid the need of XxxInverseFunctor.
196 197
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
198 199 200 201
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, int axis, Functor func,
                          framework::Tensor *z) {
202 203 204 205 206 207 208 209 210 211 212 213 214 215
  if (platform::is_gpu_place(ctx.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
    std::vector<const framework::Tensor *> ins = {x, y};
    std::vector<framework::Tensor *> outs = {z};
    z->mutable_data<OutType>(ctx.GetPlace());

    const auto &dev_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, OutType>(
        dev_ctx, ins, &outs, axis, func);
#endif
    return;
  }

216 217 218 219 220
  z->mutable_data<OutType>(ctx.GetPlace());
  auto pt_x = paddle::experimental::MakePtenDenseTensor(*x);
  auto pt_y = paddle::experimental::MakePtenDenseTensor(*y);
  auto pt_z = paddle::experimental::MakePtenDenseTensor(*z);

221 222 223 224
  const auto &dev_ctx =
      ctx.template device_context<platform::CPUDeviceContext>();
  pten::ElementwiseCompute<Functor, T, OutType>(
      dev_ctx, *pt_x.get(), *pt_y.get(), axis, func, pt_z.get());
F
fengjiayi 已提交
225 226
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
                                             CompoundFunctor compound_functor,
                                             int h, int w, T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
                                             int n, int post,
                                             CompoundFunctor compound_functor,
                                             T *out, T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

334
#if defined(__NVCC__) || defined(__HIPCC__)
335 336 337 338 339
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
    const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
    T *out, T *intermediate_out) {
340 341
  int i = blockIdx.x;
  int j = threadIdx.x;
342

343
  while (j < w) {
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    int offset = i * w + j;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

369
    j += ELEMWISE_MAX_BLOCK_DIM;
370 371 372 373 374
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
375
static void FusedElemwiseAndActBroadcast1CUDA(gpuStream_t stream, const T *x,
376 377 378 379
                                              const T *y,
                                              CompoundFunctor compound_functor,
                                              int h, int w, T *out,
                                              T *intermediate_out) {
380 381
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, w);
  int gird_size = h;
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
  FusedElemwiseAndActBroadcast1CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, h, w, compound_functor, out, intermediate_out);
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
    const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
    int post, T *out, T *intermediate_out) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  while (true) {
    int i = tid / post;
    int k = tid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    tid += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
432
static void FusedElemwiseAndActBroadcast2CUDA(gpuStream_t stream, const T *x,
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                                              const T *y, int pre, int n,
                                              int post,
                                              CompoundFunctor compound_functor,
                                              T *out, T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;

  FusedElemwiseAndActBroadcast2CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, compound_functor, pre, n, post, out, intermediate_out);
}

#endif

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::Tensor &x, const framework::Tensor &y,
    CompoundFunctor compound_functor, framework::Tensor *out,
    framework::Tensor *intermediate_out) {
  size_t N = static_cast<size_t>(framework::product(x_dim));

  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(), y.data<T>(), compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool BcastY, bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
    framework::Tensor *out, framework::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

481
  int pre, n, post, is_run_common_broadcast;
482 483
  pten::funcs::get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post,
                            &is_run_common_broadcast);
484 485 486 487
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
488
#if defined(__NVCC__) || defined(__HIPCC__)
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
      FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
511
#if defined(__NVCC__) || defined(__HIPCC__)
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
      FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

// --- backward
C
chengduo 已提交
536 537
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut>
538 539
struct FusedElemwiseAndActGradNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
540 541 542
    T zero = static_cast<T>(0);
    T x_val = (x_ == nullptr) ? zero : x_[i];
    T y_val = (y_ == nullptr) ? zero : y_[i];
543 544 545 546 547
    T out_val = out_[i];
    T dout_val = dout_[i];
    T intermediate_out_val = UseIntermediateOut
                                 ? intermediate_out_[i]
                                 : dx_op_.GetIntermediateOut(x_val, y_val);
548
    if (dx_ != nullptr) {
549 550
      dx_[i] = dx_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
551 552
    }
    if (dy_ != nullptr) {
553 554
      dy_[i] = dy_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
C
chengduo 已提交
555 556
    }
    if (dintermediate_ != nullptr) {
557 558
      dintermediate_[i] = dintermediate_op_.UseIntermediateOut(
          x_val, intermediate_out_val, out_val, dout_val);
559 560 561 562 563 564 565 566 567 568
    }
  }

  const T *x_;
  const T *y_;
  const T *intermediate_out_;
  const T *out_;
  const T *dout_;
  DX_OP dx_op_;
  DY_OP dy_op_;
C
chengduo 已提交
569
  DIntermediate_OP dintermediate_op_;
570 571
  T *dx_;
  T *dy_;
C
chengduo 已提交
572
  T *dintermediate_;
573 574 575
};

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
576
          typename DIntermediate_OP, bool UseIntermediateOut>
577 578 579 580 581
void FusedElemwiseAndActGradComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
582 583 584
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
585 586 587
  size_t N = static_cast<size_t>(framework::product(x_dim));
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
588 589 590 591 592 593 594 595 596 597 598 599 600
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();

  for_range(FusedElemwiseAndActGradNoBroadcast<
            T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>{
      x_data, y_data, intermediate_out ? intermediate_out->data<T>() : nullptr,
      out->data<T>(), dout->data<T>(), dx_op, dy_op, dintermediate_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
      dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                               ctx.GetPlace())});
601 602
}

C
chengduo 已提交
603 604 605 606 607 608 609
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
610
  int64_t tmp_out_idx, x_idx, y_idx;
611
  T zero = static_cast<T>(0);
612 613 614 615 616 617 618
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      tmp_out_idx = BcastY ? j : offset;
      y_idx = BcastY ? j : offset;
      x_idx = BcastY ? offset : j;
619 620
      T x_val = (x == nullptr) ? zero : x[x_idx];
      T y_val = (y == nullptr) ? zero : y[y_idx];
621 622 623 624 625 626 627

      if (SameShapeOfIntermediateOutAndOut) {
        tmp_out_idx = offset;
      }

      if (dx != nullptr) {
        T tmp = UseIntermediateOut
628
                    ? dx_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
629 630
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
631
                    : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
632 633 634 635 636 637 638 639 640 641 642 643 644

        if (BcastY) {
          dx[x_idx] = tmp;
        } else {
          if (i == 0) {
            dx[x_idx] = tmp;
          } else {
            dx[x_idx] += tmp;
          }
        }
      }
      if (dy != nullptr) {
        T tmp = UseIntermediateOut
645
                    ? dy_op.UseIntermediateOut(x_val, y_val,
C
chengduo 已提交
646 647
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
648
                    : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
649 650 651 652 653 654 655 656 657 658
        if (BcastY) {
          if (i == 0) {
            dy[y_idx] = tmp;
          } else {
            dy[y_idx] += tmp;
          }
        } else {
          dy[y_idx] = tmp;
        }
      }
C
chengduo 已提交
659 660 661
      if (d_intermediate != nullptr) {
        T tmp = UseIntermediateOut
                    ? dintermediate_op.UseIntermediateOut(
662
                          x_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
663
                          dout[offset])
664 665
                    : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                 dout[i]);
C
chengduo 已提交
666 667 668 669 670 671 672 673 674 675
        if (SameShapeOfIntermediateOutAndOut) {
          d_intermediate[tmp_out_idx] = tmp;
        } else {
          if (i == 0) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            d_intermediate[tmp_out_idx] += tmp;
          }
        }
      }
676 677 678 679
    }
  }
}

C
chengduo 已提交
680 681 682 683 684 685 686
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
687
  int64_t tmp_out_idx, x_idx, y_idx;
688
  T zero = static_cast<T>(0);
689 690 691 692 693 694 695 696 697
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        tmp_out_idx = BcastY ? j : offset;
        y_idx = BcastY ? j : offset;
        x_idx = BcastY ? offset : j;

698 699 700
        T x_val = (x == nullptr) ? zero : x[x_idx];
        T y_val = (y == nullptr) ? zero : y[y_idx];

701 702 703 704 705
        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }

        if (dx != nullptr) {
706 707 708 709 710 711
          T tmp =
              UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
712 713 714 715 716 717 718 719 720 721 722 723

          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            if (i == 0 && k == 0) {
              dx[x_idx] = tmp;
            } else {
              dx[x_idx] += tmp;
            }
          }
        }
        if (dy != nullptr) {
724 725 726 727 728 729
          T tmp =
              UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
730 731 732 733 734 735 736 737 738 739
          if (BcastY) {
            if (i == 0 && k == 0) {
              dy[y_idx] = tmp;
            } else {
              dy[y_idx] += tmp;
            }
          } else {
            dy[y_idx] = tmp;
          }
        }
C
chengduo 已提交
740 741 742
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
743 744 745 746
                            x_val, intermediate_out[tmp_out_idx], out[offset],
                            dout[offset])
                      : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                   dout[i]);
C
chengduo 已提交
747 748 749 750 751 752 753 754 755 756
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            if (i == 0) {
              d_intermediate[tmp_out_idx] = tmp;
            } else {
              d_intermediate[tmp_out_idx] += tmp;
            }
          }
        }
757 758 759 760 761
      }
    }
  }
}

762
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
763 764 765
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
766 767
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
768 769
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
770 771 772 773 774 775
  __shared__ T sdata[BLOCK_Y][BLOCK_X];
  size_t idx = threadIdx.x + BLOCK_X * blockIdx.x;
  size_t width_stride = gridDim.x * BLOCK_X;

  size_t full_w = ROUNDUP(w, BLOCK_X);

776
  T zero = static_cast<T>(0);
777

778 779 780 781 782
  for (size_t j = idx; j < full_w; j += width_stride) {
    T val(0), inter_val(0);
    if (j < w) {
      for (size_t i = threadIdx.y; i < h; i += BLOCK_Y) {
        size_t offset = i * w + j;
783

784 785 786 787 788
        size_t tmp_out_idx = BcastY ? j : offset;
        size_t y_idx = BcastY ? j : offset;
        size_t x_idx = BcastY ? offset : j;
        T x_val = (x == nullptr) ? zero : x[x_idx];
        T y_val = (y == nullptr) ? zero : y[y_idx];
789

790 791 792
        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }
793

794 795 796
        if (dx != nullptr) {
          T tmp =
              UseIntermediateOut
797 798 799 800
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
801

802 803 804 805 806 807 808 809 810
          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            val += tmp;
          }
        }
        if (dy != nullptr) {
          T tmp =
              UseIntermediateOut
811 812 813 814
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
          if (BcastY) {
            val += tmp;
          } else {
            dy[y_idx] = tmp;
          }
        }
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
                            y[y_idx], intermediate_out[tmp_out_idx],
                            out[offset], dout[offset])
                      : dintermediate_op.Recompute(x_val, y_val, out[offset],
                                                   dout[offset]);
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            inter_val += tmp;
          }
        }
C
chengduo 已提交
834 835
      }
    }
836

837 838 839 840 841 842 843 844 845
    // transpose, for ReduceSum with wrap
    sdata[threadIdx.y][threadIdx.x] = val;
    __syncthreads();
    val = sdata[threadIdx.x][threadIdx.y];
#pragma unroll
    for (int i = BLOCK_X >> 1; i > 0; i >>= 1) {
      // reduce sum with wrap
      val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);
    }
846

847 848 849 850
    size_t idx_j = j + threadIdx.y;
    if (BcastY) {
      if (dy) {
        if (threadIdx.x == 0 && (idx_j < w)) dy[idx_j] = val;
851
      }
852 853 854
    } else {
      if (dx) {
        if (threadIdx.x == 0 && (idx_j < w)) dx[idx_j] = val;
855 856
      }
    }
857 858 859 860 861 862 863 864 865 866 867 868

    if (!SameShapeOfIntermediateOutAndOut) {
      if (d_intermediate) {
        sdata[threadIdx.y][threadIdx.x] = inter_val;
        __syncthreads();
        inter_val = sdata[threadIdx.x][threadIdx.y];
#pragma unroll
        for (int i = BLOCK_X >> 1; i > 0; i >>= 1) {
          // reduce sum with wrap
          inter_val += platform::CudaShuffleXorSync(0xFFFFFFFF, inter_val, i);
        }
        if (threadIdx.x == 0 && (idx_j < w)) d_intermediate[idx_j] = inter_val;
C
chengduo 已提交
869 870
      }
    }
871
  }  // end for
872 873
}

C
chengduo 已提交
874 875 876 877
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CUDA(
878 879 880 881 882 883 884 885 886 887 888 889
    const framework::ExecutionContext &ctx, const T *x, const T *y,
    const T *intermediate_out, const T *out, const T *dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *d_intermediate) {
  gpuStream_t stream = ctx.cuda_device_context().stream();

  dim3 blocks(BLOCK_X, BLOCK_Y);
  int max_gpu_threads = ctx.cuda_device_context().GetMaxPhysicalThreadCount();
  int max_blocks = std::max(max_gpu_threads / (BLOCK_X * BLOCK_Y), 1);
  int theory_block = (w + BLOCK_X - 1) / BLOCK_X;
  dim3 grids(std::min(theory_block, max_blocks));

890
  FusedElemwiseAndActGradBroadcast1CUDAKernel<
C
chengduo 已提交
891
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
892
      SameShapeOfIntermediateOutAndOut><<<grids, blocks, 0, stream>>>(
C
chengduo 已提交
893 894
      x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dintermediate_op,
      dx, dy, d_intermediate);
895 896
}

C
chengduo 已提交
897 898 899
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
900 901
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
902 903
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
904 905 906
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
907
  T val(0), inter_val(0);
908 909
  int ttid = tid;
  int64_t tmp_out_idx, x_idx, y_idx;
910
  T zero = static_cast<T>(0);
911 912 913 914 915 916 917 918 919 920
  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;
921 922
    T x_val = (x == nullptr) ? zero : x[x_idx];
    T y_val = (y == nullptr) ? zero : y[y_idx];
923 924 925 926 927 928

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
929 930 931 932 933
      T tmp = UseIntermediateOut
                  ? dx_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
934 935 936 937 938 939 940 941

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
942 943 944 945 946
      T tmp = UseIntermediateOut
                  ? dy_op.UseIntermediateOut(x_val, y_val,
                                             intermediate_out[tmp_out_idx],
                                             out[offset], dout[offset])
                  : dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
947 948 949 950 951 952
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
953 954 955
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
956
                        y_val, intermediate_out[tmp_out_idx], out[offset],
C
chengduo 已提交
957
                        dout[offset])
958
                  : dintermediate_op.Recompute(x_val, y_val, out[offset],
C
chengduo 已提交
959 960 961 962 963 964 965
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
966 967 968
    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

C
chengduo 已提交
969 970
  int h = pre * post;
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
986 987 988 989 990 991 992 993
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
994 995
}

C
chengduo 已提交
996 997 998
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
999
static void FusedElemwiseAndActGradBroadcast2CUDA(
1000
    gpuStream_t stream, const T *x, const T *y, const T *intermediate_out,
1001
    const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
C
chengduo 已提交
1002 1003
    DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *dintermediate) {
1004 1005 1006
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  FusedElemwiseAndActGradBroadcast2CUDAKernel<
C
chengduo 已提交
1007
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
1008
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
1009 1010
      x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op,
      dintermediate_op, dx, dy, dintermediate);
1011 1012 1013 1014
}
#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
1015
          typename DIntermediate_OP, bool UseIntermediateOut, bool BcastY,
1016 1017 1018 1019 1020 1021
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
1022 1023 1024
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
1025 1026 1027 1028
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

1029
  int pre, n, post, is_run_common_broadcast;
1030 1031
  pten::funcs::get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post,
                            &is_run_common_broadcast);
1032 1033 1034 1035
  const T *x_data = nullptr;
  const T *y_data = nullptr;
  if (x->IsInitialized()) x_data = x->data<T>();
  if (y->IsInitialized()) y_data = y->data<T>();
1036 1037 1038
  if (post == 1) {
    int h = pre;
    int w = n;
1039

1040
    if (platform::is_gpu_place(ctx.GetPlace())) {
1041
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
1042 1043
      FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
1044
                                            SameShapeOfIntermediateOutAndOut>(
1045
          ctx, x_data, y_data,
1046
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
1047
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
1048
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1049 1050 1051
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1052 1053
#endif
    } else {
C
chengduo 已提交
1054 1055
      FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
1056
                                           SameShapeOfIntermediateOutAndOut>(
1057
          x_data, y_data,
1058
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
1059
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
1060
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1061 1062 1063
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1064 1065 1066
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
1067
#if defined(__NVCC__) || defined(__HIPCC__)
C
chengduo 已提交
1068 1069
      FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
1070
                                            SameShapeOfIntermediateOutAndOut>(
1071
          ctx.template device_context<DeviceContext>().stream(), x_data, y_data,
1072 1073
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
1074
          dintermediate_op,
1075
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1076 1077 1078
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1079 1080
#endif
    } else {
C
chengduo 已提交
1081 1082
      FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
1083
                                           SameShapeOfIntermediateOutAndOut>(
1084
          x_data, y_data,
1085 1086
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
1087
          dintermediate_op,
1088
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1089 1090 1091
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
1092 1093 1094 1095 1096
    }
  }
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
1097 1098
          typename DIntermediate_OP, bool UseIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
1099 1100 1101 1102
void FusedElemwiseAndActGradComputeEx(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *out,
    const framework::Tensor *intermediate_out, const framework::Tensor *dout,
C
chengduo 已提交
1103 1104 1105
    int axis, framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
1106 1107 1108
  const framework::DDim &x_dim = x->dims();
  const framework::DDim &y_dim = y->dims();
  if (UseIntermediateOut) {
1109 1110 1111
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument("Intermediate out is null pointer."));
1112 1113
  }
  if (x_dim == y_dim) {
C
chengduo 已提交
1114 1115
    FusedElemwiseAndActGradComputeNoBroadcast<
        DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>(
1116
        ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
C
chengduo 已提交
1117
        dintermediate, dx_op, dy_op, dintermediate_op);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
  } else {  // Y is a scalar
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
1133 1134 1135 1136
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          true /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
1137 1138
    } else {
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
1139 1140 1141 1142
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          false /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim, x_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    }
  }
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
                                  const framework::Tensor &x,
                                  const framework::Tensor &y, int axis,
                                  CompoundFunctor compound_functor,
                                  framework::Tensor *out,
                                  framework::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
1156 1157 1158 1159 1160
    PADDLE_ENFORCE_NOT_NULL(
        intermediate_out,
        platform::errors::InvalidArgument(
            "The save_intermediate_out is opened, intermediate "
            "out is null pointer."));
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
  }

  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
1172
    bool bcast_y = x.numel() >= y.numel();
1173 1174 1175 1176
    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
1177 1178
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, true /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    } else {
      // In this case,
1190 1191
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, false /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    }
  }
}
1204 1205 1206 1207 1208 1209 1210 1211

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *ddx, framework::Tensor *ddx_safe) {
  if (ddx) {
    *ddx_safe = *ddx;
  } else {
1212 1213
    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    *ddx_safe = ctx.AllocateTmpTensor<T, DeviceContext>(x->dims(), dev_ctx);
1214 1215 1216 1217 1218 1219
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(ctx.template device_context<DeviceContext>(), ddx_safe,
             static_cast<T>(0));
  }
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
// for broadcast backwards
static inline std::vector<int> GetReduceDim(const framework::DDim &in,
                                            const framework::DDim &out,
                                            int axis) {
  axis =
      (axis == -1 ? std::abs(static_cast<int>(out.size() - in.size())) : axis);
  std::vector<int> dims;
  for (int i = 0; i < axis; ++i) {
    dims.push_back(i);
  }
  for (int i = 0; i < in.size(); ++i) {
    if (out[i + axis] != in[i]) {
      dims.push_back(i + axis);
    }
  }
  for (int i = axis + in.size(); i < out.size(); ++i) {
    dims.push_back(i);
  }
  return dims;
}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T>
void ReduceWrapper(const platform::CUDADeviceContext &dev_ctx, int axis,
                   framework::Tensor *src, framework::Tensor *dst) {
  std::vector<int> reduce_dims = GetReduceDim(dst->dims(), src->dims(), axis);
  TensorReduceFunctorImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
      *src, dst, kps::IdentityFunctor<T>(), reduce_dims, dev_ctx.stream());
}

template <ElementwiseType ET, typename T, typename Functor>
void GetGradXAndYOut(const platform::CUDADeviceContext &dev_ctx,
                     const platform::Place &place, int axis,
                     std::vector<const framework::Tensor *> ins,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy, Functor func) {
  framework::Tensor tmp_dx;
  framework::Tensor tmp_dy;
1258
  dx->mutable_data<T>(place);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
  dy->mutable_data<T>(place);
  std::vector<framework::Tensor *> outs;
  if (dx->dims() == dout->dims() && dy->dims() == dout->dims()) {
    outs = {dx, dy};
  } else if (dx->dims() != dout->dims() && dy->dims() == dout->dims()) {
    tmp_dx.mutable_data<T>(dout->dims(), place);
    outs = {&tmp_dx, dy};
  } else if (dx->dims() == dout->dims() && dy->dims() != dout->dims()) {
    tmp_dy.mutable_data<T>(dout->dims(), place);
    outs = {dx, &tmp_dy};
  } else if (dx->dims() != dout->dims() && dy->dims() != dout->dims()) {
    tmp_dy.mutable_data<T>(dout->dims(), place);
    tmp_dx.mutable_data<T>(dout->dims(), place);
    outs = {&tmp_dx, &tmp_dy};
  }

  LaunchElementwiseCudaKernel<ET, T, T, decltype(func), 2>(dev_ctx, ins, &outs,
                                                           axis, func);

  if (dx->dims() != dout->dims() && dy->dims() == dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dx, dx);
  } else if (dx->dims() == dout->dims() && dy->dims() != dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dy, dy);
  } else if (dx->dims() != dout->dims() && dy->dims() != dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dx, dx);
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dy, dy);
  }
}

template <ElementwiseType ET, typename T, typename Functor>
void GetGradXOrYOut(const platform::CUDADeviceContext &dev_ctx,
                    const platform::Place &place, int axis,
                    std::vector<const framework::Tensor *> ins,
                    const framework::Tensor *dout, framework::Tensor *dxy,
                    Functor func) {
  framework::Tensor tmp_dxy;
  dxy->mutable_data<T>(place);

  std::vector<framework::Tensor *> outs;
  if (dxy->dims() != dout->dims()) {
    tmp_dxy.mutable_data<T>(dout->dims(), place);
    outs = {&tmp_dxy};
  } else {
    outs = {dxy};
  }

  LaunchElementwiseCudaKernel<ET, T, T>(dev_ctx, ins, &outs, axis, func);
  if (dxy->dims() != dout->dims()) {
    ReduceWrapper<T>(dev_ctx, axis, &tmp_dxy, dxy);
  }
}

#endif

1313 1314
}  // namespace operators
}  // namespace paddle