nn.py 9.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant

__all__ = [
    'Conv2D',
    'Pool2D',
    'FC',
]


X
Xin Pan 已提交
33
class Conv2D(layers.Layer):
M
minqiyang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 use_cudnn=True,
                 act=None,
                 param_attr=None,
                 bias_attr=None,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
M
minqiyang 已提交
49 50 51 52 53 54 55 56 57
        super(Conv2D, self).__init__(name=name, dtype=dtype)

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
            type(self).__name__,
            param_attr=param_attr,
            bias_attr=bias_attr,
            dtype=dtype,
            name=name)
M
minqiyang 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._num_channels = num_channels
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups
        filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
        filter_shape = [num_filters, int(num_filter_channels)] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
            self._helper.create_variable(
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

M
minqiyang 已提交
107 108
        self._bias_param = self._helper.create_parameter(
            attr=self._helper.bias_attr,
M
minqiyang 已提交
109
            shape=[num_filters],
M
minqiyang 已提交
110 111
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
112 113

    def forward(self, input):
M
minqiyang 已提交
114 115 116
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
117 118 119 120 121 122
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
123
            outputs={"Output": pre_bias},
M
minqiyang 已提交
124 125 126 127 128 129 130 131 132
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

M
minqiyang 已提交
133 134
        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
M
minqiyang 已提交
135

M
minqiyang 已提交
136 137 138 139 140 141 142 143
        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

        return self._helper.append_activation(pre_act)
M
minqiyang 已提交
144 145


X
Xin Pan 已提交
146
class Pool2D(layers.Layer):
M
minqiyang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        super(Pool2D, self).__init__(name=name, dtype=dtype)

M
minqiyang 已提交
173 174 175
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(type(self).__name__, dtype=dtype, name=name)

M
minqiyang 已提交
176 177 178 179 180 181 182 183 184 185 186 187
        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
188 189
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
190 191 192
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
193
            outputs={"Out": pool_out},
M
minqiyang 已提交
194 195 196 197 198 199 200 201 202 203 204
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
205
        return pool_out
M
minqiyang 已提交
206 207


X
Xin Pan 已提交
208
class FC(layers.Layer):
M
minqiyang 已提交
209
    def __init__(self,
M
minqiyang 已提交
210
                 size,
M
minqiyang 已提交
211
                 param_attr=None,
X
Xin Pan 已提交
212
                 bias_attr=None,
M
minqiyang 已提交
213
                 num_flatten_dims=1,
X
Xin Pan 已提交
214 215 216
                 dtype=core.VarDesc.VarType.FP32,
                 act=None,
                 name=None):
M
minqiyang 已提交
217 218
        super(FC, self).__init__()
        self._size = size
M
minqiyang 已提交
219 220
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
M
minqiyang 已提交
221
        from ..layer_helper import LayerHelper
X
Xin Pan 已提交
222
        self._helper = LayerHelper(
X
Xin Pan 已提交
223
            'FC', param_attr=param_attr, act=act, name=name)
X
Xin Pan 已提交
224
        self._bias_attr = bias_attr if bias_attr else ParamAttr()
X
Xin Pan 已提交
225 226

    def parameters(self):
X
Xin Pan 已提交
227
        return [self._w, self._b]
M
minqiyang 已提交
228 229 230 231 232

    def _build_once(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
M
minqiyang 已提交
233
        ] + [self._size]
M
minqiyang 已提交
234 235 236 237 238 239 240
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
M
minqiyang 已提交
241
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
242 243 244 245
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._w},
M
minqiyang 已提交
246
            outputs={"Out": tmp},
M
minqiyang 已提交
247 248 249 250 251
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

M
minqiyang 已提交
252
        out = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
253 254
        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
255 256
            inputs={"X": [tmp]},
            outputs={"Out": out},
M
minqiyang 已提交
257
            attrs={"use_mkldnn": False})
X
Xin Pan 已提交
258 259 260
        if not self._bias_attr:
            return out

X
Xin Pan 已提交
261
        # add bias
X
Xin Pan 已提交
262 263
        size = list(out.shape[1:])
        if not self._built:
X
Xin Pan 已提交
264
            self._b = self._helper.create_parameter(
X
Xin Pan 已提交
265
                attr=self._bias_attr, shape=size, dtype=out.dtype, is_bias=True)
X
Xin Pan 已提交
266 267 268
        bias_out = self._helper.create_variable_for_type_inference(
            dtype=out.dtype)
        self._helper.append_op(
X
Xin Pan 已提交
269 270 271 272 273
            type='elementwise_add',
            inputs={'X': [out],
                    'Y': [self._b]},
            outputs={'Out': [bias_out]},
            attrs={'axis': 1})
X
Xin Pan 已提交
274
        # add activation
X
Xin Pan 已提交
275
        return self._helper.append_activation(bias_out)