bce_loss_op.cc 7.0 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/bce_loss_op.h"
#include <memory>
#include <string>
#include <vector>

namespace paddle {
namespace operators {

using framework::Tensor;

class BCELossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
C
ceci3 已提交
30 31 32
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BCELoss");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "BCELoss");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "BCELoss");
C
ceci3 已提交
33 34

    auto x_dims = ctx->GetInputDim("X");
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    auto labels_dims = ctx->GetInputDim("Label");

    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(rank, labels_dims.size(),
                      platform::errors::InvalidArgument(
                          "Input(X) and Input(Label) shall have the same rank."
                          "But received: the rank of Input(X) is [%d], "
                          "the rank of Input(Label) is [%d].",
                          rank, labels_dims.size()));

    bool check = true;
    if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
                                framework::product(labels_dims) <= 0)) {
      check = false;
    }

C
ceci3 已提交
51
    if (check) {
52 53 54 55 56 57
      PADDLE_ENFORCE_EQ(x_dims, labels_dims,
                        platform::errors::InvalidArgument(
                            "Input(X) and Input(Label) shall have the same "
                            "shape. But received: the shape of Input(X) is "
                            "[%s], the shape of Input(Label) is [%s].",
                            x_dims, labels_dims));
C
ceci3 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    }

    ctx->ShareDim("X", "Out");
    ctx->ShareLoD("X", "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }
};

class BCELossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
C
ceci3 已提交
78 79 80 81 82 83
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BCELossGrad");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "BCELossGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "BCELossGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "BCELossGrad");
C
ceci3 已提交
84 85

    auto x_dims = ctx->GetInputDim("X");
86
    auto labels_dims = ctx->GetInputDim("Label");
C
ceci3 已提交
87
    auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
88 89 90 91 92 93 94

    bool check = true;
    if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
                                framework::product(labels_dims) <= 0)) {
      check = false;
    }

C
ceci3 已提交
95
    if (check) {
96 97 98 99 100 101 102
      PADDLE_ENFORCE_EQ(x_dims, labels_dims,
                        platform::errors::InvalidArgument(
                            "Input(X) and Input(Label) shall have the same "
                            "shape. But received: the shape of Input(X) is "
                            "[%s], the shape of Input(Label) is [%s].",
                            x_dims, labels_dims));

C
ceci3 已提交
103 104
      PADDLE_ENFORCE_EQ(x_dims, dout_dims,
                        platform::errors::InvalidArgument(
105 106 107
                            "Input(X) and Input(Out@Grad) shall have the same "
                            "shape. But received: the shape of Input(X) is "
                            "[%s], the shape of Input(Out@Grad) is [%s].",
C
ceci3 已提交
108 109
                            x_dims, dout_dims));
    }
110

C
ceci3 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }
};

class BCELossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), the input is a tensor of logits"
             "computed by the previous operator, which is always the result of"
             "a sigmoid operator. Input must between in 0 and 1.");
    AddInput("Label",
             "(Tensor, default Tensor<float>), have same shape with input"
             "label should between in 0 and 1.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), have same shape with"
              "input");
    AddComment(R"DOC(
BinaryCrossEntropy operator.

This measures the element-wise probability error in classification tasks
in which each class is independent.

The logitstic loss is given as follows:
      $$loss = -Label * \log(X) - (1 - Label) * \log(1 - X)$$
)DOC");
  }
};

template <typename T>
class BCELossGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("bce_loss_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

DECLARE_INPLACE_OP_INFERER(BCELossInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(BCELossGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(bce_loss, ops::BCELossOp, ops::BCELossOpMaker,
                  ops::BCELossGradOpMaker<paddle::framework::OpDesc>,
                  ops::BCELossGradOpMaker<paddle::imperative::OpBase>,
                  ops::BCELossInplaceInferer);
REGISTER_OPERATOR(bce_loss_grad, ops::BCELossGradOp,
                  ops::BCELossGradInplaceInferer);
REGISTER_OP_CPU_KERNEL(
    bce_loss, ops::BCELossOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BCELossOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    bce_loss_grad,
    ops::BCELossGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BCELossGradOpKernel<paddle::platform::CPUDeviceContext, double>);