bce_loss_op.cu 3.9 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/operators/bce_loss_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
C
ceci3 已提交
17
#include "paddle/fluid/operators/math.h"
18 19
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
20
#include "paddle/pten/core/hostdevice.h"
C
ceci3 已提交
21 22 23

namespace paddle {
namespace operators {
24
template <typename T>
25 26 27
struct BCELossFunctor {
  T one;
  T neg_100;
28

29 30 31 32
  HOSTDEVICE inline BCELossFunctor() {
    one = static_cast<T>(1.0f);
    neg_100 = static_cast<T>(-100.);
  }
C
ceci3 已提交
33

34
  HOSTDEVICE inline T operator()(const T x, const T label) const {
35 36 37 38
    PADDLE_ENFORCE(
        (x >= static_cast<T>(0)) && (x <= one),
        "Input is expected to be within the interval [0, 1], but recieved %f.",
        x);
C
ceci3 已提交
39 40
    T term1 = max(real_log(x), neg_100);
    T term2 = max(real_log(one - x), neg_100);
41 42 43
    return (((label - one) * term2) - (label * term1));
  }
};
C
ceci3 已提交
44

45 46 47 48 49 50 51 52
template <typename T>
struct BCELossGradFunctor {
  T one;
  T eps;

  HOSTDEVICE inline BCELossGradFunctor() {
    one = static_cast<T>(1.0f);
    eps = static_cast<T>(1e-12);
C
ceci3 已提交
53
  }
54

55
  HOSTDEVICE inline T operator()(const T x, const T label, const T dout) const {
56 57 58 59 60 61
    T term1 = max((one - x) * x, eps);
    return (dout * (x - label) / term1);
  }
};

using Tensor = framework::Tensor;
C
ceci3 已提交
62 63 64 65 66 67 68 69

template <typename DeviceContext, typename T>
class BCELossCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* out = ctx.Output<Tensor>("Out");
70 71 72 73 74
    out->mutable_data<T>(ctx.GetPlace());
    std::vector<const framework::Tensor*> ins = {x, labels};
    std::vector<framework::Tensor*> outs = {out};
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto functor = BCELossFunctor<T>();
75 76
    paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                              &outs, functor);
C
ceci3 已提交
77 78 79 80 81 82 83 84 85 86 87
  }
};

template <typename DeviceContext, typename T>
class BCELossGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
88 89 90 91 92
    dx->mutable_data<T>(ctx.GetPlace());
    std::vector<const framework::Tensor*> ins = {x, labels, dout};
    std::vector<framework::Tensor*> outs = {dx};
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto functor = BCELossGradFunctor<T>();
93 94
    paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                              &outs, functor);
C
ceci3 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    bce_loss,
    ops::BCELossCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::BCELossCUDAKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    bce_loss_grad,
    ops::BCELossGradCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::BCELossGradCUDAKernel<paddle::platform::CUDADeviceContext, double>);