dist_eltwise.py 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from .common import DistributedOperatorImplContainer
from .common import DistributedOperatorImpl
from .common import register_distributed_operator_impl_container
from .common import register_distributed_operator_impl
from .common import is_elementwise_op
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
from ..dist_attribute import OperatorDistributedAttribute
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
28
from paddle.fluid.framework import _non_static_mode
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
from ..process_group import new_process_group
from ..utils import _get_comm_group, _get_corresponding_rank
from .dist_default import DistributedDefaultImpl0


class DistributedElementwise(DistributedOperatorImplContainer):
    def __init__(self, op_type):
        super(DistributedElementwise, self).__init__(op_type)


register_distributed_operator_impl_container(
    DistributedElementwise("elementwise"))


# Replicated Elementwise
class DistributedElementwiseImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedElementwiseImpl0, self).__init__(name)
        self._forward_implemented = False
        self._backward_implemented = False

    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
55
        if not is_elementwise_op(op_desc.type()):
56
            return False
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        op_dist_attr = dist_op.dist_attr
        dims_mapping_list = []
        input_arg_names = op_desc.input_arg_names()
        max_dims_mapping_len = -1
        for arg_name in input_arg_names:
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
            if max_dims_mapping_len < len(dims_mapping):
                max_dims_mapping_len = len(dims_mapping)
            dims_mapping_list.append(dims_mapping)

        for idx in range(max_dims_mapping_len):
            dim_mappings = []
            for dims_mapping in dims_mapping_list:
                if idx < len(dims_mapping):
                    dim_mappings.append(dims_mapping[-(idx + 1)])
            if compute_compatible_dim_mapping(dim_mappings) is None:
                return False
        return True
75 76 77

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
78 79 80 81 82 83 84 85 86 87
        if not is_elementwise_op(op_desc.type()):
            return False
        op_dist_attr = dist_op.dist_attr
        dims_mapping_list = []
        output_arg_names = op_desc.output_arg_names()
        for arg_name in output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            dims_mapping_list.append(dims_mapping)

        if compute_compatible_dims_mapping(dims_mapping_list) is None:
88
            return False
89
        return True
90 91 92

    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
93 94
        if not is_elementwise_op(op_desc.type()):
            return False
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        op_dist_attr = dist_op.dist_attr
        dims_mapping_list = []
        input_arg_names = op_desc.input_arg_names()
        max_dims_mapping_len = -1
        for arg_name in input_arg_names:
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
            if max_dims_mapping_len < len(dims_mapping):
                max_dims_mapping_len = len(dims_mapping)
            dims_mapping_list.append(dims_mapping)
        output_arg_names = op_desc.output_arg_names()
        for arg_name in output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            assert len(dims_mapping) == max_dims_mapping_len
            dims_mapping_list.append(dims_mapping)

        for idx in range(max_dims_mapping_len):
            dim_mappings = []
            for dims_mapping in dims_mapping_list:
                if idx < len(dims_mapping):
                    dim_mappings.append(dims_mapping[-(idx + 1)])
            if not all(dim_mappings[0] == dim_mapping
                       for dim_mapping in dim_mappings):
                return False
        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        input_arg_names = op_desc.input_arg_names()
        input_dims_mapping_dict = {}
        input_dims_mapping_lens = {}
        max_dims_mapping_len = -1
        for arg_name in input_arg_names:
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
            if max_dims_mapping_len < len(dims_mapping):
                max_dims_mapping_len = len(dims_mapping)
            input_dims_mapping_dict[arg_name] = dims_mapping
            input_dims_mapping_lens[arg_name] = len(dims_mapping)

        dims_mapping_list = []
        for arg_name in input_arg_names:
            if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
                new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
                for i in range(input_dims_mapping_lens[arg_name]):
                    new_idx = (max_dims_mapping_len -
                               input_dims_mapping_lens[arg_name]) + i
                    new_dims_mapping[new_idx] = input_dims_mapping_dict[
                        arg_name][i]
                dims_mapping_list.append(new_dims_mapping)
            else:
                dims_mapping_list.append(input_dims_mapping_dict[arg_name])
        output_arg_names = op_desc.output_arg_names()
        for arg_name in output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            assert len(dims_mapping) == max_dims_mapping_len
            dims_mapping_list.append(dims_mapping)

        compatible_dims_mapping = compute_compatible_dims_mapping(
            dims_mapping_list)
155 156
        if compatible_dims_mapping is None:
            return False
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

        for arg_name in input_arg_names:
            if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
                new_dims_mapping = [
                    -1 for _ in range(input_dims_mapping_lens[arg_name])
                ]
                for i in range(input_dims_mapping_lens[arg_name]):
                    new_idx = (max_dims_mapping_len -
                               input_dims_mapping_lens[arg_name]) + i
                    new_dims_mapping[i] = compatible_dims_mapping[new_idx]
                if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                    op_dist_attr.set_input_dims_mapping(arg_name,
                                                        new_dims_mapping)
                    changed = True
            else:
                if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
                    op_dist_attr.set_input_dims_mapping(arg_name,
                                                        compatible_dims_mapping)
                    changed = True

        for arg_name in output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            if compatible_dims_mapping != dims_mapping:
                op_dist_attr.set_output_dims_mapping(arg_name,
                                                     compatible_dims_mapping)
                changed = True

        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)


register_distributed_operator_impl(
    "elementwise", DistributedElementwiseImpl0("replicate_parallel"))