pybind.cc 10.4 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
D
dangqingqing 已提交
20
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
24
#include "paddle/platform/enforce.h"
Q
qijun 已提交
25
#include "paddle/platform/place.h"
26
#include "paddle/pybind/tensor_py.h"
27
#include "paddle/string/to_string.h"
Y
Yu Yang 已提交
28 29 30 31
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

32 33
namespace py = pybind11;

Y
Yu Yang 已提交
34
USE_OP(add_two);
35
USE_OP(onehot_cross_entropy);
F
fengjiayi 已提交
36
USE_OP(sgd);
Q
qijun 已提交
37
USE_OP(mul);
L
liaogang 已提交
38
USE_OP(mean);
Q
qijun 已提交
39 40 41
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
F
fengjiayi 已提交
42
USE_OP(fill_zeros_like);
43
USE_NO_KERNEL_OP(recurrent);
44
USE_OP(gaussian_random);
Y
Yu Yang 已提交
45
USE_OP(uniform_random);
46
USE_OP(lookup_table);
Y
Yu Yang 已提交
47
USE_OP(scale);
48
USE_NO_KERNEL_OP(identity);
Y
Yu Yang 已提交
49
USE_OP(minus);
X
Xinghai Sun 已提交
50
USE_OP(cos_sim);
Z
zchen0211 已提交
51
USE_CPU_ONLY_OP(gather);
Z
zchen0211 已提交
52
USE_CPU_ONLY_OP(scatter);
53

54 55
namespace paddle {
namespace framework {
D
dongzhihong 已提交
56 57

using Tensor = framework::Tensor;
D
dangqingqing 已提交
58
using LODTensor = framework::LODTensor;
D
dongzhihong 已提交
59

60 61 62 63 64
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
65 66 67 68 69 70 71 72
bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

73
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
74
  py::module m("core", "C++ core of PaddlePaddle");
75

76 77 78
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
79
      .def("get_dims",
80
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
81
      .def("set_dims",
Q
qijun 已提交
82
           [](Tensor &self, const std::vector<int64_t> &dim) {
83
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
84 85
           })
      .def("alloc_float",
Y
Yu Yang 已提交
86
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
87
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
88
           })
Q
qijun 已提交
89
      .def("alloc_float",
Y
Yu Yang 已提交
90
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
91
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
92 93
           })
      .def("alloc_int",
Y
Yu Yang 已提交
94
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
95
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
96
           })
Q
qijun 已提交
97
      .def("alloc_int",
Y
Yu Yang 已提交
98
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
99
             self.mutable_data<int>(place);
Q
qijun 已提交
100
           })
Y
Yu Yang 已提交
101 102
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
Q
qijun 已提交
103
#ifndef PADDLE_ONLY_CPU
Y
Yu Yang 已提交
104 105
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
Q
qijun 已提交
106
#endif
107
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
108
      .def("set_float_element",
109
           [](Tensor &self, size_t offset, float f) {
Y
Yu Yang 已提交
110
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
111 112
             self.data<float>()[offset] = f;
           })
113
      .def("get_float_element", [](Tensor &self, size_t offset) -> float {
Y
Yu Yang 已提交
114
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
115 116
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
117

D
dangqingqing 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  py::class_<LODTensor>(m, "LODTensor", R"DOC(LOD(Leval of Ddetails) Tensor.

The tensor and LOD info should be created before creating the LODTensor, then
call the set_tensor and set_lod functions to set them.

)DOC")
      .def("set_tensor",
           [](LODTensor &self, Tensor *tensor) { self.set_tensor(tensor); })
      .def("set_lod",
           [](LODTensor &self, std::vector<std::vector<size_t>> &lod) {
             self.set_lod(lod);
           })
      .def("get_tensor",
           [](LODTensor &self) -> Tensor & { return self.tensor(); },
           py::return_value_policy::reference)
      .def("get_lod", [](LODTensor &self) -> std::vector<std::vector<size_t>> {
        return self.lod();
      });

137
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
138 139 140

All parameter, weight, gradient are variables in Paddle.
)DOC")
141
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
142
      .def("set_int",
143 144
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
Y
Yu Yang 已提交
145
      .def("get_tensor",
146
           [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
Y
Yan Chunwei 已提交
147
           py::return_value_policy::reference)
D
dangqingqing 已提交
148 149 150 151 152
      .def("get_lod_tensor",
           [](Variable &self) -> LODTensor * {
             return self.GetMutable<LODTensor>();
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
153
      .def("get_net",
D
dongzhihong 已提交
154 155
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
156
           },
Y
Yu Yang 已提交
157
           py::return_value_policy::reference);
158

159
  py::class_<Scope>(m, "Scope", "")
Y
Yu Yang 已提交
160
      .def("new_var",
161
           [](Scope &self, const std::string &name) -> Variable * {
Y
Yu Yang 已提交
162 163
             return self.NewVar(name);
           },
164
           py::return_value_policy::reference)
165
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
166
      .def(py::init<>())
167 168
      .def("new_scope",
           [](Scope &self) -> Scope * { return &self.NewScope(); },
169
           py::return_value_policy::reference)
170
      .def("drop_kids", &Scope::DropKids);
171

Y
Yu Yang 已提交
172 173
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
174 175
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
176 177 178 179

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
180
      std::string str;
Y
Yu Yang 已提交
181
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
182
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
183 184
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
185 186
    return ret_values;
  });
187 188 189
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
190 191
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
192
  // clang-format off
Y
Yu Yang 已提交
193
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
194 195
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
196
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
197 198 199 200 201
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
202
#ifdef PADDLE_ONLY_CPU
Q
qijun 已提交
203
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
204
#else
Q
qijun 已提交
205
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
206
#endif
Q
qijun 已提交
207
                  });
Q
qijun 已提交
208
  // clang-format on
Q
qijun 已提交
209

210 211 212
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
213

214 215 216
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
217

Y
Yu Yang 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
      .def("infer_shape", &OperatorBase::InferShape)
      .def("run", &OperatorBase::Run)
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
248

Y
Yu Yang 已提交
249 250 251 252 253 254 255
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
256 257 258 259
      .def("append_op",
           [](operators::NetOp &self, const OperatorBase &op) {
             self.AppendOp(op);
           })
D
dongzhihong 已提交
260 261 262 263
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
264

Y
Yan Chunwei 已提交
265
  // recurrent_op
Y
Yu Yang 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
279 280 281
      .def("set_stepnet",
           [](operators::RecurrentOp &self, const operators::NetOp &net)
               -> void { self.set_stepnet(net.Clone()); });
Y
Yan Chunwei 已提交
282

283 284
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
285 286
  m.def("is_compile_gpu", IsCompileGPU);

287
  return m.ptr();
L
Luo Tao 已提交
288
}
289 290
}  // namespace framework
}  // namespace paddle