test_recognize_digits.py 7.7 KB
Newer Older
Y
Yang Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import paddle.v2.fluid as fluid
import paddle.v2 as paddle
import sys
Y
Yang Yu 已提交
19
import numpy
20
import unittest
21 22
import math
import sys
Y
Yang Yu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


def parse_arg():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "nn_type",
        help="The neural network type, in ['mlp', 'conv']",
        type=str,
        choices=['mlp', 'conv'])
    parser.add_argument(
        "--parallel",
        help='Run in parallel or not',
        default=False,
        action="store_true")
    parser.add_argument(
        "--use_cuda",
        help="Run the program by using CUDA",
        default=False,
        action="store_true")
    return parser.parse_args()


BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
L
Liu Yiqun 已提交
51 52 53
    avg_loss = fluid.layers.mean(x=loss)
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


80 81 82
def train(nn_type, use_cuda, parallel, save_dirname):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
83 84 85
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

86
    if nn_type == 'mlp':
Y
Yang Yu 已提交
87 88 89 90
        net_conf = mlp
    else:
        net_conf = conv_net

91
    if parallel:
Y
Yang Yu 已提交
92 93 94 95 96
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
97 98
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
99 100 101 102 103 104 105
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
        avg_loss = fluid.layers.mean(x=avg_loss)
        acc = fluid.layers.mean(x=acc)
    else:
L
Liu Yiqun 已提交
106
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
107

Y
Yang Yu 已提交
108 109
    test_program = fluid.default_main_program().clone()

Y
Yang Yu 已提交
110 111 112
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
    optimizer.minimize(avg_loss)

113
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
114 115 116 117 118 119 120 121

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
122 123
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
124 125 126 127 128
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

    PASS_NUM = 100
    for pass_id in range(PASS_NUM):
        for batch_id, data in enumerate(train_reader()):
Y
Yang Yu 已提交
129 130
            # train a mini-batch, fetch nothing
            exe.run(feed=feeder.feed(data))
Y
Yang Yu 已提交
131
            if (batch_id + 1) % 10 == 0:
Y
Yang Yu 已提交
132 133 134 135 136 137 138 139 140 141 142 143
                acc_set = []
                avg_loss_set = []
                for test_data in test_reader():
                    acc_np, avg_loss_np = exe.run(program=test_program,
                                                  feed=feeder.feed(test_data),
                                                  fetch_list=[acc, avg_loss])
                    acc_set.append(float(acc_np))
                    avg_loss_set.append(float(avg_loss_np))
                # get test acc and loss
                acc_val = numpy.array(acc_set).mean()
                avg_loss_val = numpy.array(avg_loss_set).mean()
                if float(acc_val) > 0.85:  # test acc > 85%
L
Liu Yiqun 已提交
144 145 146 147
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, ["img"],
                                                      [prediction], exe)
                    return
Y
Yang Yu 已提交
148 149
                else:
                    print(
Y
Yang Yu 已提交
150
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
Y
Yang Yu 已提交
151
                        format(pass_id, batch_id + 1,
Y
Yang Yu 已提交
152
                               float(avg_loss_val), float(acc_val)))
153 154
                    if math.isnan(float(avg_loss_val)):
                        sys.exit("got NaN loss, training failed.")
155
    raise AssertionError("Loss of recognize digits is too large")
Y
Yang Yu 已提交
156 157


158
def infer(use_cuda, save_dirname=None):
L
Liu Yiqun 已提交
159 160 161
    if save_dirname is None:
        return

162
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
163 164 165 166 167 168 169 170 171
    exe = fluid.Executor(place)

    # Use fluid.io.load_inference_model to obtain the inference program desc,
    # the feed_target_names (the names of variables that will be feeded 
    # data using feed operators), and the fetch_targets (variables that 
    # we want to obtain data from using fetch operators).
    [inference_program, feed_target_names,
     fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

172
    # The input's dimension of conv should be 4-D or 5-D.
173 174 175
    # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
    tensor_img = numpy.random.uniform(-1.0, 1.0,
                                      [1, 1, 28, 28]).astype("float32")
L
Liu Yiqun 已提交
176 177 178 179 180 181 182 183 184

    # Construct feed as a dictionary of {feed_target_name: feed_target_data}
    # and results will contain a list of data corresponding to fetch_targets.
    results = exe.run(inference_program,
                      feed={feed_target_names[0]: tensor_img},
                      fetch_list=fetch_targets)
    print("infer results: ", results[0])


185 186 187
def main(use_cuda, parallel, nn_type):
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
L
Liu Yiqun 已提交
188 189
    else:
        save_dirname = None
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
        save_dirname=save_dirname)
    infer(use_cuda=use_cuda, save_dirname=save_dirname)


class TestRecognizeDigits(unittest.TestCase):
    pass


def inject_test_method(use_cuda, parallel, nn_type):
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                main(use_cuda, parallel, nn_type)

    fn = 'test_{0}_{1}_{2}'.format(nn_type, 'cuda'
                                   if use_cuda else 'cpu', 'parallel'
                                   if parallel else 'normal')

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
        for parallel in (False, True):
            for nn_type in ('mlp', 'conv'):
                inject_test_method(use_cuda, parallel, nn_type)


inject_all_tests()

if __name__ == '__main__':
    unittest.main()