hashtable_inl.h 5.7 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
15
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

namespace paddle {
namespace framework {

template <typename value_type>
struct ReplaceOp {
  __host__ __device__ value_type operator()(value_type new_value,
                                            value_type old_value) {
    return new_value;
  }
};

template <typename Table>
__global__ void insert_kernel(Table* table,
                              const typename Table::key_type* const keys,
                              const typename Table::mapped_type* const vals,
                              size_t len) {
  ReplaceOp<typename Table::mapped_type> op;
  thrust::pair<typename Table::key_type, typename Table::mapped_type> kv;

  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    kv.first = keys[i];
    kv.second = vals[i];
    auto it = table->insert(kv, op);
    assert(it != table->end() && "error: insert fails: table is full");
  }
}

template <typename Table>
__global__ void search_kernel(Table* table,
                              const typename Table::key_type* const keys,
                              typename Table::mapped_type* const vals,
                              size_t len) {
  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    auto it = table->find(keys[i]);
    if (it != table->end()) {
      vals[i] = it->second;
    }
  }
}

template <typename Table, typename GradType, typename Sgd>
__global__ void update_kernel(Table* table,
                              const typename Table::key_type* const keys,
                              const GradType* const grads, size_t len,
                              Sgd sgd) {
  const size_t i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < len) {
    auto it = table->find(keys[i]);
    if (it != table->end()) {
      sgd.update_value((it.getter())->second, grads[i]);
    }
  }
}

template <typename KeyType, typename ValType>
HashTable<KeyType, ValType>::HashTable(size_t capacity) {
  container_ = new TableContainer<KeyType, ValType>(capacity);
76
  rwlock_.reset(new RWLock);
T
Thunderbrook 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90
}

template <typename KeyType, typename ValType>
HashTable<KeyType, ValType>::~HashTable() {
  delete container_;
}

template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::show() {
  container_->print();
}

template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::get(const KeyType* d_keys, ValType* d_vals,
91
                                      size_t len, gpuStream_t stream) {
T
Thunderbrook 已提交
92 93 94 95 96 97 98 99 100 101 102
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  search_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(container_, d_keys,
                                                       d_vals, len);
}

template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::insert(const KeyType* d_keys,
                                         const ValType* d_vals, size_t len,
103
                                         gpuStream_t stream) {
T
Thunderbrook 已提交
104 105 106 107 108 109 110 111
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  insert_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(container_, d_keys,
                                                       d_vals, len);
}

T
Thunderbrook 已提交
112 113 114 115 116 117 118 119 120 121 122
template <typename KeyType, typename ValType>
void HashTable<KeyType, ValType>::dump_to_cpu(int devid, cudaStream_t stream) {
  container_->prefetch(cudaCpuDeviceId, stream);
  size_t num = container_->size();
  KeyType unuse_key = std::numeric_limits<KeyType>::max();
  thrust::pair<KeyType, ValType>* kv = container_->data();
  for (size_t i = 0; i < num; ++i) {
    if (kv[i].first == unuse_key) {
      continue;
    }
    ValType& gpu_val = kv[i].second;
T
Thunderbrook 已提交
123
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    auto* downpour_value =
        (paddle::ps::DownpourFixedFeatureValue*)(gpu_val.cpu_ptr);
    int downpour_value_size = downpour_value->size();
    if (gpu_val.mf_size > 0 && downpour_value_size == 7) {
      downpour_value->resize(gpu_val.mf_size + downpour_value_size);
    }
    float* cpu_val = downpour_value->data();
    cpu_val[0] = 0;
    cpu_val[1] = gpu_val.delta_score;
    cpu_val[2] = gpu_val.show;
    cpu_val[3] = gpu_val.clk;
    cpu_val[4] = gpu_val.lr;
    cpu_val[5] = gpu_val.lr_g2sum;
    cpu_val[6] = gpu_val.slot;
    if (gpu_val.mf_size > 0) {
      for (int x = 0; x < gpu_val.mf_size; x++) {
        cpu_val[x + 7] = gpu_val.mf[x];
      }
    }
T
Thunderbrook 已提交
143 144 145 146 147 148 149 150
#endif
#ifdef PADDLE_WITH_PSCORE
    auto* downpour_value = (paddle::distributed::VALUE*)(gpu_val.cpu_ptr);
    downpour_value->count_ = gpu_val.show;
    for (int x = 0; x < gpu_val.mf_size; x++) {
      downpour_value->data_[x] = gpu_val.mf[x];
    }
#endif
T
Thunderbrook 已提交
151 152 153 154 155
  }

  container_->prefetch(devid, stream);
}

T
Thunderbrook 已提交
156 157 158 159
template <typename KeyType, typename ValType>
template <typename GradType, typename Sgd>
void HashTable<KeyType, ValType>::update(const KeyType* d_keys,
                                         const GradType* d_grads, size_t len,
160
                                         Sgd sgd, gpuStream_t stream) {
T
Thunderbrook 已提交
161 162 163 164 165 166 167 168 169 170 171
  if (len == 0) {
    return;
  }
  const int grid_size = (len - 1) / BLOCK_SIZE_ + 1;
  update_kernel<<<grid_size, BLOCK_SIZE_, 0, stream>>>(container_, d_keys,
                                                       d_grads, len, sgd);
}

}  // end namespace framework
}  // end namespace paddle
#endif