decode.py 44.2 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15

16
import collections
17
import warnings
18 19 20 21

import numpy as np

import paddle
22 23
from paddle.framework import _non_static_mode
from paddle.static import default_main_program
24

25
from ..fluid.data_feeder import convert_dtype
26
from ..fluid.layers.utils import flatten, map_structure
27 28

__all__ = []
29 30


31 32 33 34 35 36 37 38 39 40 41 42
class ArrayWrapper:
    def __init__(self, x):
        self.array = [x]

    def append(self, x):
        self.array.append(x)
        return self

    def __getitem__(self, item):
        return self.array.__getitem__(item)


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
class Decoder:
    """
    Decoder is the base class for any decoder instance used in `dynamic_decode`.
    It provides interface for output generation for one time step, which can be
    used to generate sequences.

    The key abstraction provided by Decoder is:

    1. :code:`(initial_input, initial_state, finished) = initialize(inits)` ,
    which generates the input and state for the first decoding step, and gives the
    initial status telling whether each sequence in the batch is finished.
    It would be called once before the decoding iterations.

    2. :code:`(output, next_state, next_input, finished) = step(time, input, state)` ,
    which transforms the input and state to the output and new state, generates
    input for the next decoding step, and emits the flag indicating finished status.
    It is the main part for each decoding iteration.

    3. :code:`(final_outputs, final_state) = finalize(outputs, final_state, sequence_lengths)` ,
    which revises the outputs(stack of all time steps' output) and final state(state from the
    last decoding step) to get the counterpart for special usage.
    Not necessary to be implemented if no need to revise the stacked outputs and
    state from the last decoding step. If implemented, it would be called after
    the decoding iterations.

    Decoder is more general compared to RNNCell, since the returned `next_input`
    and `finished` make it can determine the input and when to finish by itself
    when used in dynamic decoding. Decoder always wraps a RNNCell instance though
    not necessary.
    """

    def initialize(self, inits):
        r"""
        Called once before the decoding iterations.

        Parameters:
            inits: Argument provided by the caller.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
        raise NotImplementedError

    def step(self, time, inputs, states, **kwargs):
        r"""
        Called per step of decoding.

        Parameters:
            time(Tensor): A Tensor with shape :math:`[1]` provided by the caller.
                The data type is int64.
            inputs(Tensor): A (possibly nested structure of) tensor variable[s].
            states(Tensor): A (possibly nested structure of) tensor variable[s].
            **kwargs: Additional keyword arguments, provided by the caller.

        Returns:
            tuple: A tuple( :code:(outputs, next_states, next_inputs, finished)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s], and the structure, shape and \
                data type must be same as the counterpart from input arguments. \
                `outputs` is a (possibly nested structure of) tensor variable[s]. \
                `finished` is a Tensor with bool data type.
        """
        raise NotImplementedError

    def finalize(self, outputs, final_states, sequence_lengths):
        r"""
        Called once after the decoding iterations if implemented.

        Parameters:
            outputs(Tensor): A (possibly nested structure of) tensor variable[s].
                The structure and data type is same as `output_dtype`.
                The tensor stacks all time steps' output thus has shape
                :math:`[time\_step, batch\_size, ...]` , which is done by the caller.
            final_states(Tensor): A (possibly nested structure of) tensor variable[s].
                It is the `next_states` returned by `decoder.step` at last decoding step,
                thus has the same structure, shape and data type with states at any time
                step.

        Returns:
            tuple: A tuple( :code:`(final_outputs, final_states)` ). \
                `final_outputs` and `final_states` both are a (possibly nested \
                structure of) tensor variable[s].
        """
        raise NotImplementedError

    @property
    def tracks_own_finished(self):
        """
        Describes whether the Decoder keeps track of finished states by itself.

        `decoder.step()` would emit a bool `finished` value at each decoding
        step. The emited `finished` can be used to determine whether every
        batch entries is finished directly, or it can be combined with the
        finished tracker keeped in `dynamic_decode` by performing a logical OR
        to take the already finished into account.

        If `False`, the latter would be took when performing `dynamic_decode`,
        which is the default. Otherwise, the former would be took, which uses
        the finished value emited by the decoder as all batch entry finished
        status directly, and it is the case when batch entries might be
        reordered such as beams in BeamSearchDecoder.

        Returns:
            bool: A python bool `False`.
        """
        return False


class BeamSearchDecoder(Decoder):
    """
    Decoder with beam search decoding strategy. It wraps a cell to get probabilities,
    and follows a beam search step to calculate scores and select candidate
    token ids for each decoding step.

    Please refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.

L
liu zhengxi 已提交
163 164 165 166 167 168 169 170
    Note:
        When decoding with beam search, the `inputs` and `states` of cell
        would be tiled to `beam_size` (unsqueeze and tile), resulting to shapes like
        `[batch_size * beam_size, ...]` , which is built into `BeamSearchDecoder` and
        done automatically. Thus any other tensor with shape `[batch_size, ...]` used
        in `cell.call` needs to be tiled manually first, which can be completed by using
        :code:`BeamSearchDecoder.tile_beam_merge_with_batch` . The most common case
        for this is the encoder output in attention mechanism.
171

学渣戊's avatar
学渣戊 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184
    Parameters:
        cell (RNNCellBase): An instance of `RNNCellBase` or object with the same interface.
        start_token (int): The start token id.
        end_token (int): The end token id.
        beam_size (int): The beam width used in beam search.
        embedding_fn (optional): A callable to apply to selected candidate ids.
            Mostly it is an embedding layer to transform ids to embeddings,
            and the returned value acts as the `input` argument for `cell.call`.
            If not provided, the id to embedding transformation must be built into
            `cell.call`. Default None.
        output_fn (optional): A callable to apply to the cell's output prior to
            calculate scores and select candidate token ids. Default None.

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    Returns:
        BeamSearchDecoder: An instance of decoder which can be used in \
            `paddle.nn.dynamic_decode` to implement decoding.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.nn import BeamSearchDecoder, dynamic_decode
            from paddle.nn import GRUCell, Linear, Embedding
            trg_embeder = Embedding(100, 32)
            output_layer = Linear(32, 32)
            decoder_cell = GRUCell(input_size=32, hidden_size=32)
            decoder = BeamSearchDecoder(decoder_cell,
                                        start_token=0,
                                        end_token=1,
                                        beam_size=4,
                                        embedding_fn=trg_embeder,
                                        output_fn=output_layer)

    """

    def __init__(
        self,
        cell,
        start_token,
        end_token,
        beam_size,
        embedding_fn=None,
        output_fn=None,
    ):
        """
        Constructor of BeamSearchDecoder.

        Parameters:
            cell(RNNCellBase): An instance of `RNNCellBase` or object with the same interface.
            start_token(int): The start token id.
            end_token(int): The end token id.
            beam_size(int): The beam width used in beam search.
            embedding_fn(optional): A callable to apply to selected candidate ids.
                Mostly it is an embedding layer to transform ids to embeddings,
                and the returned value acts as the `input` argument for `cell.call`.
                If not provided, the id to embedding transformation must be built into
                `cell.call`. Default None.
            output_fn(optional): A callable to apply to the cell's output prior to
                calculate scores and select candidate token ids. Default None.
        """
        self.cell = cell
        self.embedding_fn = embedding_fn
        self.output_fn = output_fn
        self.start_token = start_token
        self.end_token = end_token
        self.beam_size = beam_size

    @staticmethod
    def tile_beam_merge_with_batch(x, beam_size):
        r"""
        Tile the batch dimension of a tensor. Specifically, this function takes
        a tensor t shaped `[batch_size, s0, s1, ...]` composed of minibatch
        entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
        `[batch_size * beam_size, s0, s1, ...]` composed of minibatch entries
        `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
        `beam_size` times.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size, ...]`. The data type
                should be float32, float64, int32, int64 or bool.
            beam_size(int): The beam width used in beam search.

        Returns:
            Tensor: A tensor with shape `[batch_size * beam_size, ...]`, whose \
                data type is same as `x`.
        """
        x = paddle.unsqueeze(x, [1])  # [batch_size, 1, ...]
        expand_times = [1] * len(x.shape)
        expand_times[1] = beam_size
        x = paddle.tile(x, expand_times)  # [batch_size, beam_size, ...]
        x = paddle.transpose(
            x, list(range(2, len(x.shape))) + [0, 1]
        )  # [..., batch_size, beam_size]
        # use 0 to copy to avoid wrong shape
        x = paddle.reshape(
            x, shape=[0] * (len(x.shape) - 2) + [-1]
        )  # [..., batch_size * beam_size]
        x = paddle.transpose(
            x, [len(x.shape) - 1] + list(range(0, len(x.shape) - 1))
        )  # [batch_size * beam_size, ...]
        return x

    def _split_batch_beams(self, x):
        r"""
        Reshape a tensor with shape `[batch_size * beam_size, ...]` to a new
        tensor with shape `[batch_size, beam_size, ...]`.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size * beam_size, ...]`. The
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Tensor: A tensor with shape `[batch_size, beam_size, ...]`, whose \
                data type is same as `x`.
        """
        # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
        return paddle.reshape(x, shape=[-1, self.beam_size] + list(x.shape[1:]))

    def _merge_batch_beams(self, x):
        r"""
        Reshape a tensor with shape `[batch_size, beam_size, ...]` to a new
        tensor with shape `[batch_size * beam_size, ...]`.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size, beam_size, ...]`. The
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Tensor: A tensor with shape `[batch_size * beam_size, ...]`, whose \
                data type is same as `x`.
        """
        # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
        return paddle.reshape(x, shape=[-1] + list(x.shape[2:]))

    def _expand_to_beam_size(self, x):
        r"""
        This function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed
        of minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a
        shape `[batch_size, beam_size, s0, s1, ...]` composed of minibatch entries
        `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
        `beam_size` times.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size, ...]`, The data type
                should be float32, float64, int32, int64 or bool.

        Returns:
            Tensor: A tensor with shape `[batch_size, beam_size, ...]`, whose \
                data type is same as `x`.
        """
        x = paddle.unsqueeze(x, [1])
        expand_times = [1] * len(x.shape)
        expand_times[1] = self.beam_size
        x = paddle.tile(x, expand_times)
        return x

    def _mask_probs(self, probs, finished):
        r"""
        Mask log probabilities. It forces finished beams to allocate all probability
        mass to eos and unfinished beams to remain unchanged.

        Parameters:
            probs(Tensor): A tensor with shape `[batch_size, beam_size, vocab_size]`,
                representing the log probabilities. Its data type should be float32 or float64.
            finished(Tensor): A tensor with shape `[batch_size, beam_size]`,
                representing the finished status for all beams. Its data type
                should be bool.

        Returns:
            Tensor: A tensor with the same shape and data type as `x`, \
                where unfinished beams stay unchanged and finished beams are \
                replaced with a tensor with all probability on the EOS token.
        """
        # TODO: use where_op
        finished = paddle.cast(finished, dtype=probs.dtype)

        probs = paddle.multiply(
            paddle.tile(
                paddle.unsqueeze(finished, [2]), [1, 1, self.vocab_size]
            ),
            self.noend_mask_tensor,
        ) - paddle.multiply(probs, (finished - 1).unsqueeze([2]))

        return probs

    def _gather(self, x, indices, batch_size):
        r"""
        Gather from the tensor `x` using `indices`.

        Parameters:
            x(Tensor): A tensor with shape `[batch_size, beam_size, ...]`.
            indices(Tensor): A `int64` tensor with shape `[batch_size, beam_size]`,
                representing the indices that we use to gather.
            batch_size(Tensor): A tensor with shape `[1]`. Its data type should
                be int32 or int64.

        Returns:
            Tensor: A tensor with the same shape and data type as `x`, \
                representing the gathered tensor.
        """
        # TODO: compatibility of int32 and int64
        batch_size = (
            paddle.cast(batch_size, indices.dtype)
            if batch_size.dtype != indices.dtype
            else batch_size
        )
        batch_size.stop_gradient = True  # TODO: remove this
        batch_pos = paddle.tile(
            paddle.unsqueeze(
                paddle.arange(0, batch_size, 1, dtype=indices.dtype), [1]
            ),
            [1, self.beam_size],
        )
        topk_coordinates = paddle.stack([batch_pos, indices], axis=2)
        topk_coordinates.stop_gradient = True
        return paddle.gather_nd(x, topk_coordinates)

    class OutputWrapper(
        collections.namedtuple(
            "OutputWrapper", ("scores", "predicted_ids", "parent_ids")
        )
    ):
        """
        The structure for the returned value `outputs` of `decoder.step`.
        A namedtuple includes scores, predicted_ids, parent_ids as fields.
        """

        pass

    class StateWrapper(
        collections.namedtuple(
            "StateWrapper", ("cell_states", "log_probs", "finished", "lengths")
        )
    ):
        """
        The structure for the argument `states` of `decoder.step`.
        A namedtuple includes cell_states, log_probs, finished, lengths as fields.
        """

        pass

    def initialize(self, initial_cell_states):
        r"""
        Initialize the BeamSearchDecoder.

        Parameters:
            initial_cell_states(Tensor): A (possibly nested structure of)
                tensor variable[s]. An argument provided by the caller.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` is a tensor t filled by `start_token` with shape \
                `[batch_size, beam_size]` when `embedding_fn` is None, or the \
                returned value of `embedding_fn(t)` when `embedding_fn` is provided. \
                `initial_states` is a nested structure(namedtuple including cell_states, \
                log_probs, finished, lengths as fields) of tensor variables, where \
                `log_probs, finished, lengths` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, bool, int64`. \
                cell_states has a value with the same structure as the input \
                argument `initial_cell_states` but with tiled shape `[batch_size, beam_size, ...]`. \
                `finished` is a `bool` tensor filled by False with shape `[batch_size, beam_size]`.
        """
        self.kinf = 1e9
        state = flatten(initial_cell_states)[0]
        self.batch_size = paddle.shape(state)[0]

        self.start_token_tensor = paddle.full(
            shape=[1], dtype="int64", fill_value=self.start_token
        )
        self.end_token_tensor = paddle.full(
            shape=[1], dtype="int64", fill_value=self.end_token
        )

        init_cell_states = map_structure(
            self._expand_to_beam_size, initial_cell_states
        )
        init_inputs = paddle.full(
            shape=[self.batch_size, self.beam_size],
            fill_value=self.start_token_tensor,
            dtype=self.start_token_tensor.dtype,
        )
        log_probs = paddle.tile(
            paddle.assign(
                np.array(
                    [[0.0] + [-self.kinf] * (self.beam_size - 1)],
                    dtype="float32",
                )
            ),
            [self.batch_size, 1],
        )
        if paddle.get_default_dtype() == "float64":
            log_probs = paddle.cast(log_probs, "float64")

        init_finished = paddle.full(
            shape=[paddle.shape(state)[0], self.beam_size],
            fill_value=False,
            dtype="bool",
        )

        init_lengths = paddle.zeros_like(init_inputs)
        init_inputs = (
            self.embedding_fn(init_inputs) if self.embedding_fn else init_inputs
        )
        return (
            init_inputs,
            self.StateWrapper(
                init_cell_states, log_probs, init_finished, init_lengths
            ),
            init_finished,
        )

    def _beam_search_step(self, time, logits, next_cell_states, beam_state):
        r"""
        Calculate scores and select candidate token ids.

        Parameters:
            time(Tensor): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            logits(Tensor): A tensor with shape `[batch_size, beam_size, vocab_size]`,
                representing the logits at the current time step. Its data type is float32.
            next_cell_states(Tensor): A (possibly nested structure of) tensor variable[s].
                It has the same structure, shape and data type as the `cell_states` of
                `initial_states` returned by `initialize()`. It represents the next state
                from the cell.
            beam_state(Tensor): A structure of tensor variables.
                It is same as the `initial_states` returned by `initialize()` for
                the first decoding step and `beam_search_state` returned by
                `step()` for the others.

        Returns:
            tuple: A tuple( :code:`(beam_search_output, beam_search_state)` ). \
                `beam_search_output` is a namedtuple(including scores, predicted_ids, \
                parent_ids as fields) of tensor variables, where \
                `scores, predicted_ids, parent_ids` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, int64, int64`.
                `beam_search_state` has the same structure, shape and data type \
                as the input argument `beam_state`.

        """
        self.vocab_size = logits.shape[-1]
        self.vocab_size_tensor = paddle.full(
            shape=[1], dtype="int64", fill_value=self.vocab_size
        )
        noend_array = [-self.kinf] * self.vocab_size
        noend_array[self.end_token] = 0

        self.noend_mask_tensor = paddle.assign(np.array(noend_array, "float32"))
        if paddle.get_default_dtype() == "float64":
            self.noend_mask_tensor = paddle.cast(
                self.noend_mask_tensor, "float64"
            )

        step_log_probs = paddle.log(paddle.nn.functional.softmax(logits))
        step_log_probs = self._mask_probs(step_log_probs, beam_state.finished)

        log_probs = paddle.add(
            step_log_probs, beam_state.log_probs.unsqueeze([2])
        )

        # TODO: length penalty
        scores = log_probs
        scores = paddle.reshape(scores, [-1, self.beam_size * self.vocab_size])
        # TODO: add grad for topk then this beam search can be used to train
        topk_scores, topk_indices = paddle.topk(x=scores, k=self.beam_size)
        beam_indices = paddle.floor_divide(topk_indices, self.vocab_size_tensor)
        token_indices = paddle.remainder(topk_indices, self.vocab_size_tensor)
        next_log_probs = self._gather(
            paddle.reshape(log_probs, [-1, self.beam_size * self.vocab_size]),
            topk_indices,
            self.batch_size,
        )
        next_cell_states = map_structure(
            lambda x: self._gather(x, beam_indices, self.batch_size),
            next_cell_states,
        )
        next_finished = self._gather(
            beam_state.finished, beam_indices, self.batch_size
        )
        next_lengths = self._gather(
            beam_state.lengths, beam_indices, self.batch_size
        )
        next_lengths = next_lengths + paddle.cast(
            paddle.logical_not(next_finished), beam_state.lengths.dtype
        )
        next_finished = paddle.logical_or(
            next_finished,
            paddle.equal(token_indices, self.end_token_tensor),
        )

        beam_search_output = self.OutputWrapper(
            topk_scores, token_indices, beam_indices
        )
        beam_search_state = self.StateWrapper(
            next_cell_states, next_log_probs, next_finished, next_lengths
        )
        return beam_search_output, beam_search_state

    def step(self, time, inputs, states, **kwargs):
        r"""
        Perform a beam search decoding step, which uses `cell` to get probabilities,
        and follows a beam search step to calculate scores and select candidate
        token ids.

        Parameters:
            time(Tensor): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            inputs(Tensor): A tensor variable. It is same as `initial_inputs`
                returned by `initialize()` for the first decoding step and
                `next_inputs` returned by `step()` for the others.
            states(Tensor): A structure of tensor variables.
                It is same as the `initial_states` returned by `initialize()` for
                the first decoding step and `beam_search_state` returned by
                `step()` for the others.
            **kwargs: Additional keyword arguments, provided by the caller.

        Returns:
            tuple: A tuple( :code:`(beam_search_output, beam_search_state, next_inputs, finished)` ). \
                `beam_search_state` and `next_inputs` have the same structure, \
                shape and data type as the input arguments `states` and `inputs` separately. \
                `beam_search_output` is a namedtuple(including scores, predicted_ids, \
                parent_ids as fields) of tensor variables, where \
                `scores, predicted_ids, parent_ids` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, int64, int64`. \
                `finished` is a `bool` tensor with shape `[batch_size, beam_size]`.
        """
        inputs = map_structure(self._merge_batch_beams, inputs)
        cell_states = map_structure(self._merge_batch_beams, states.cell_states)
        cell_outputs, next_cell_states = self.cell(
            inputs, cell_states, **kwargs
        )
        cell_outputs = map_structure(self._split_batch_beams, cell_outputs)
        next_cell_states = map_structure(
            self._split_batch_beams, next_cell_states
        )

        if self.output_fn is not None:
            cell_outputs = self.output_fn(cell_outputs)

        beam_search_output, beam_search_state = self._beam_search_step(
            time=time,
            logits=cell_outputs,
            next_cell_states=next_cell_states,
            beam_state=states,
        )
        finished = beam_search_state.finished
        sample_ids = beam_search_output.predicted_ids
        sample_ids.stop_gradient = True
        next_inputs = (
            self.embedding_fn(sample_ids) if self.embedding_fn else sample_ids
        )

        return (beam_search_output, beam_search_state, next_inputs, finished)

    def finalize(self, outputs, final_states, sequence_lengths):
        r"""
        Use `gather_tree` to backtrace along the beam search tree and construct
        the full predicted sequences.

        Parameters:
            outputs(Tensor): A structure(namedtuple) of tensor variables,
                The structure and data type is same as `output_dtype`.
                The tensor stacks all time steps' output thus has shape
                `[time_step, batch_size, ...]`, which is done by the caller.
            final_states(Tensor): A structure(namedtuple) of tensor variables.
                It is the `next_states` returned by `decoder.step` at last
                decoding step, thus has the same structure, shape and data type
                with states at any time step.
            sequence_lengths(Tensor): An `int64` tensor shaped `[batch_size, beam_size]`.
                It contains sequence lengths for each beam determined during
                decoding.

        Returns:
            tuple: A tuple( :code:`(predicted_ids, final_states)` ). \
                `predicted_ids` is an `int64` tensor shaped \
                `[time_step, batch_size, beam_size]`. `final_states` is the same \
                as the input argument `final_states`.
        """
        predicted_ids = paddle.nn.functional.gather_tree(
            outputs.predicted_ids, outputs.parent_ids
        )
        # TODO: use FinalBeamSearchDecoderOutput as output
        return predicted_ids, final_states

    @property
    def tracks_own_finished(self):
        """
        BeamSearchDecoder reorders its beams and their finished state. Thus it
        conflicts with `dynamic_decode` function's tracking of finished states.
        Setting this property to true to avoid early stopping of decoding due
        to mismanagement of the finished state.

        Returns:
            bool: A python bool `True`.
        """
        return True
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090


def _dynamic_decode_imperative(
    decoder,
    inits=None,
    max_step_num=None,
    output_time_major=False,
    impute_finished=False,
    is_test=False,
    return_length=False,
    **kwargs
):
    def _maybe_copy(state, new_state, step_mask):
        # TODO: use where_op
        state_dtype = state.dtype
        if convert_dtype(state_dtype) in ["bool"]:
            state = paddle.cast(state, dtype="float32")
            new_state = paddle.cast(new_state, dtype="float32")
        if step_mask.dtype != state.dtype:
            step_mask = paddle.cast(step_mask, dtype=state.dtype)
            # otherwise, renamed bool gradients of would be summed up leading
            # to sum(bool) error.
        step_mask = step_mask.unsqueeze([1])
        step_mask.stop_gradient = True
        new_state = paddle.multiply(state, step_mask) - paddle.multiply(
            new_state, (step_mask - 1)
        )
        if convert_dtype(state_dtype) in ["bool"]:
            new_state = paddle.cast(new_state, dtype=state_dtype)
        return new_state

    initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
    inputs, states, finished = (
        initial_inputs,
        initial_states,
        initial_finished,
    )
    cond = paddle.logical_not((paddle.all(initial_finished)))
    sequence_lengths = paddle.cast(paddle.zeros_like(initial_finished), "int64")
    outputs = None

    step_idx = 0
    step_idx_tensor = paddle.full(shape=[1], fill_value=step_idx, dtype="int64")
    while cond.numpy():
        (step_outputs, next_states, next_inputs, next_finished) = decoder.step(
            step_idx_tensor, inputs, states, **kwargs
        )
        if not decoder.tracks_own_finished:
            # BeamSearchDecoder would track it own finished, since
            # beams would be reordered and the finished status of each
            # entry might change. Otherwise, perform logical OR which
            # would not change the already finished.
            next_finished = paddle.logical_or(next_finished, finished)
            # To confirm states.finished/finished be consistent with
            # next_finished.
            paddle.assign(next_finished, finished)
            next_sequence_lengths = paddle.add(
                sequence_lengths,
                paddle.cast(
                    paddle.logical_not(finished), sequence_lengths.dtype
                ),
            )
            if impute_finished:  # rectify the states for the finished.
                next_states = map_structure(
                    lambda x, y: _maybe_copy(x, y, finished),
                    states,
                    next_states,
                )
        else:
            warnings.warn(
                "`next_states` has no `lengths` attribute, the returned `sequence_lengths` would be all zeros."
            ) if not hasattr(next_states, "lengths") else None
            next_sequence_lengths = getattr(
                next_states, "lengths", sequence_lengths
            )

        outputs = (
            map_structure(lambda x: ArrayWrapper(x), step_outputs)
            if step_idx == 0
            else map_structure(
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )
        inputs, states, finished, sequence_lengths = (
            next_inputs,
            next_states,
            next_finished,
            next_sequence_lengths,
        )

        step_idx_tensor = paddle.increment(x=step_idx_tensor, value=1.0)
        step_idx += 1

        cond = paddle.logical_not(paddle.all(finished))
        if max_step_num is not None and step_idx > max_step_num:
            break

    final_outputs = map_structure(
        lambda x: paddle.stack(x.array, axis=0), outputs
    )
    final_states = states

    try:
        final_outputs, final_states = decoder.finalize(
            final_outputs, final_states, sequence_lengths
        )
    except NotImplementedError:
        pass

    if not output_time_major:
        final_outputs = map_structure(
            lambda x: paddle.transpose(
                x, [1, 0] + list(range(2, len(x.shape)))
            ),
            final_outputs,
        )

    return (
        (final_outputs, final_states, sequence_lengths)
        if return_length
        else (final_outputs, final_states)
    )


def _dynamic_decode_declarative(
    decoder,
    inits=None,
    max_step_num=None,
    output_time_major=False,
    impute_finished=False,
    is_test=False,
    return_length=False,
    **kwargs
):
    initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
    global_inputs, global_states, global_finished = (
        initial_inputs,
        initial_states,
        initial_finished,
    )
    global_finished.stop_gradient = True
    step_idx = paddle.full(shape=[1], fill_value=0, dtype="int64")

    cond = paddle.logical_not((paddle.all(initial_finished)))
    if max_step_num is not None:
        max_step_num = paddle.full(
            shape=[1], fill_value=max_step_num, dtype="int64"
        )

    while_op = paddle.static.nn.control_flow.While(cond, is_test=is_test)

    sequence_lengths = paddle.cast(paddle.zeros_like(initial_finished), "int64")
    sequence_lengths.stop_gradient = True

    if is_test:
        # for test, reuse inputs and states variables to save memory
        inputs = map_structure(lambda x: x, initial_inputs)
        states = map_structure(lambda x: x, initial_states)
    else:
        # inputs and states of all steps must be saved for backward and training
        inputs_arrays = map_structure(
            lambda x: paddle.tensor.array.array_write(x, step_idx),
            initial_inputs,
        )
        states_arrays = map_structure(
            lambda x: paddle.tensor.array.array_write(x, step_idx),
            initial_states,
        )

    def _maybe_copy(state, new_state, step_mask):
        # TODO: use where_op
        state_dtype = state.dtype
        if convert_dtype(state_dtype) in ["bool"]:
            state = paddle.cast(state, dtype="float32")
            new_state = paddle.cast(new_state, dtype="float32")
        if step_mask.dtype != state.dtype:
            step_mask = paddle.cast(step_mask, dtype=state.dtype)
            # otherwise, renamed bool gradients of would be summed up leading
            # to sum(bool) error.
        step_mask = step_mask.unsqueeze([1])
        step_mask.stop_gradient = True
        new_state = paddle.multiply(state, step_mask) - paddle.multiply(
            new_state, (step_mask - 1)
        )
        if convert_dtype(state_dtype) in ["bool"]:
            new_state = paddle.cast(new_state, dtype=state_dtype)
        return new_state

    def _transpose_batch_time(x):
        return paddle.transpose(x, [1, 0] + list(range(2, len(x.shape))))

    def _create_array_out_of_while(dtype):
        current_block_idx = default_main_program().current_block_idx
        default_main_program().current_block_idx = (
            default_main_program().current_block().parent_idx
        )
        tensor_array = paddle.tensor.array.create_array(dtype)
        default_main_program().current_block_idx = current_block_idx
        return tensor_array

    # While
    with while_op.block():
        if not is_test:
            inputs = map_structure(
                lambda array: paddle.tensor.array.array_read(array, step_idx),
                inputs_arrays,
            )
            states = map_structure(
                lambda array: paddle.tensor.array.array_read(array, step_idx),
                states_arrays,
            )
        (outputs, next_states, next_inputs, next_finished) = decoder.step(
            step_idx, inputs, states, **kwargs
        )
        if not decoder.tracks_own_finished:
            # BeamSearchDecoder would track it own finished, since beams would
            # be reordered and the finished status of each entry might change.
            # Otherwise, perform logical OR which would not change the already
            # finished.
            next_finished = paddle.logical_or(next_finished, global_finished)
            next_sequence_lengths = paddle.add(
                sequence_lengths,
                paddle.cast(
                    paddle.logical_not(global_finished),
                    sequence_lengths.dtype,
                ),
            )
            if impute_finished:  # rectify the states for the finished.
                next_states = map_structure(
                    lambda x, y: _maybe_copy(x, y, global_finished),
                    states,
                    next_states,
                )
        else:
            warnings.warn(
                "`next_states` has no `lengths` attribute, the returned `sequence_lengths` would be all zeros."
            ) if not hasattr(next_states, "lengths") else None
            next_sequence_lengths = getattr(
                next_states, "lengths", sequence_lengths
            )

        # create tensor array in global block after dtype[s] of outputs can be got
        outputs_arrays = map_structure(
            lambda x: _create_array_out_of_while(x.dtype), outputs
        )

        map_structure(
            lambda x, x_array: paddle.tensor.array.array_write(
                x, i=step_idx, array=x_array
            ),
            outputs,
            outputs_arrays,
        )
        step_idx = paddle.increment(x=step_idx, value=1.0)
        # update the global_finished first, since it might be also in states of
        # decoder, which otherwise would write a stale finished status to array
        paddle.assign(next_finished, global_finished)
        paddle.assign(next_sequence_lengths, sequence_lengths)
        if is_test:
            map_structure(paddle.assign, next_inputs, global_inputs)
            map_structure(paddle.assign, next_states, global_states)
        else:
            map_structure(
                lambda x, x_array: paddle.tensor.array.array_write(
                    x, i=step_idx, array=x_array
                ),
                next_inputs,
                inputs_arrays,
            )
            map_structure(
                lambda x, x_array: paddle.tensor.array.array_write(
                    x, i=step_idx, array=x_array
                ),
                next_states,
                states_arrays,
            )
        if max_step_num is not None:
            paddle.logical_and(
                paddle.logical_not(paddle.all(global_finished)),
                paddle.less_equal(step_idx, max_step_num),
                cond,
            )
        else:
            paddle.logical_not(paddle.all(global_finished), cond)

    final_outputs = map_structure(
        lambda array: paddle.tensor.manipulation.tensor_array_to_tensor(
            array, axis=0, use_stack=True
        )[0],
        outputs_arrays,
    )
    if is_test:
        final_states = global_states
    else:
        final_states = map_structure(
            lambda array: paddle.tensor.array.array_read(array, step_idx),
            states_arrays,
        )

    try:
        final_outputs, final_states = decoder.finalize(
            final_outputs, final_states, sequence_lengths
        )
    except NotImplementedError:
        pass

    if not output_time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

    return (
        (final_outputs, final_states, sequence_lengths)
        if return_length
        else (final_outputs, final_states)
    )


def dynamic_decode(
    decoder,
    inits=None,
    max_step_num=None,
    output_time_major=False,
    impute_finished=False,
    is_test=False,
    return_length=False,
    **kwargs
):
    r"""
    Dynamic decoding performs :code:`decoder.step()` repeatedly until the returned
    Tensor indicating finished status contains all True values or the number of
    decoding step reaches to :attr:`max_step_num`.

    :code:`decoder.initialize()` would be called once before the decoding loop.
    If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
    would be called once after the decoding loop.

    Parameters:
        decoder(Decoder): An instance of `Decoder`.
        inits(object, optional): Argument passed to `decoder.initialize`.
            Default `None`.
        max_step_num(int, optional): The maximum number of steps. If not provided,
            decode until the decoder is fully done, or in other words, the returned
            Tensor by :code:`decoder.step()` indicating finished status contains
            all True. Default `None`.
        output_time_major(bool, optional): Indicate the data layout of Tensor included
            in the final outputs(the first returned value of this method). If
            attr:`False`, the data layout would be batch major with shape
            `[batch_size, seq_len, ...]`.  If attr:`True`, the data layout would
            be time major with shape `[seq_len, batch_size, ...]`. Default: `False`.
        impute_finished(bool, optional): If `True` and `decoder.tracks_own_finished`
            is False, then states get copied through for batch entries which are
            marked as finished, which differs with the unfinished using the new states
            returned by :code:`decoder.step()` and ensures that the final states have
            the correct values. Otherwise, states wouldn't be copied through when
            finished. If the returned `final_states` is needed, it should be set as
            True, which causes some slowdown. Default `False`.
        is_test(bool, optional): A flag indicating whether to use test mode. In
            test mode, it is more memory saving. Default `False`.
        return_length(bool, optional):  A flag indicating whether to return an
            extra Tensor variable in the output tuple, which stores the actual
            lengths of all decoded sequences. Default `False`.
        **kwargs: Additional keyword arguments. Arguments passed to `decoder.step`.

    Returns:
        tuple: A tuple( :code:`(final_outputs, final_states, sequence_lengths)` ) \
            when `return_length` is True, otherwise a tuple( :code:`(final_outputs, final_states)` ). \
            The final outputs and states, both are Tensor or nested structure of Tensor. \
            `final_outputs` has the same structure and data types as the :code:`outputs` \
            returned by :code:`decoder.step()` , and each Tenser in `final_outputs` \
            is the stacked of all decoding steps' outputs, which might be revised \
            by :code:`decoder.finalize()` if the decoder has implemented `finalize`. \
            `final_states` is the counterpart at last time step of initial states \
            returned by :code:`decoder.initialize()` , thus has the same structure \
            with it and has tensors with same shapes and data types. `sequence_lengths` \
            is an `int64` tensor with the same shape as `finished` returned \
            by :code:`decoder.initialize()` , and it stores the actual lengths of \
            all decoded sequences.


    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.nn import BeamSearchDecoder, dynamic_decode
            from paddle.nn import GRUCell, Linear, Embedding
            trg_embeder = Embedding(100, 32)
            output_layer = Linear(32, 32)
            decoder_cell = GRUCell(input_size=32, hidden_size=32)
            decoder = BeamSearchDecoder(decoder_cell,
                                        start_token=0,
                                        end_token=1,
                                        beam_size=4,
                                        embedding_fn=trg_embeder,
                                        output_fn=output_layer)
            encoder_output = paddle.ones((4, 8, 32), dtype=paddle.get_default_dtype())
            outputs = dynamic_decode(decoder=decoder,
                                    inits=decoder_cell.get_initial_states(encoder_output),
                                    max_step_num=10)
    """
    if _non_static_mode():
        return _dynamic_decode_imperative(
            decoder,
            inits,
            max_step_num,
            output_time_major,
            impute_finished,
            is_test,
            return_length,
            **kwargs
        )
    else:
        return _dynamic_decode_declarative(
            decoder,
            inits,
            max_step_num,
            output_time_major,
            impute_finished,
            is_test,
            return_length,
            **kwargs
        )