sequence_pooling.cc 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/sequence_pooling.h"
A
Abhinav Arora 已提交
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/math/math_function.h"
18 19 20 21 22

namespace paddle {
namespace operators {
namespace math {

D
dzhwinter 已提交
23 24 25 26 27 28 29 30 31
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

32
template <typename T>
D
dzhwinter 已提交
33
class MaxSeqPoolFunctor {
34
 public:
Q
QI JUN 已提交
35
  void operator()(const platform::CPUDeviceContext& context,
36 37 38 39 40
                  const framework::LoDTensor& input, framework::Tensor* output,
                  framework::Tensor* index) {
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto idx_dims = index->dims();
D
dangqingqing 已提交
41 42 43
    PADDLE_ENFORCE_GT(in_dims.size(), 1);
    PADDLE_ENFORCE_GT(out_dims.size(), 1);
    for (int64_t i = 1; i < in_dims.size(); ++i) {
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, out_dims);

    auto starts = input.lod()[0];
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
    int* max_index = index->data<int>();

    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t k = 0; k < dim; ++k) {
        out_data[i * dim + k] = in_data[starts[i] * dim + k];
        max_index[i * dim + k] = starts[i];
      }
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
            max_index[i * dim + k] = j;
          }
        }
      }
    }
  }
};

template <typename T>
D
dzhwinter 已提交
73
class MaxSeqPoolGradFunctor {
74
 public:
Q
QI JUN 已提交
75
  void operator()(const platform::CPUDeviceContext& context,
76 77 78 79 80 81
                  const framework::Tensor& out_grad,
                  const framework::Tensor& index,
                  framework::LoDTensor* in_grad) {
    auto og_dims = out_grad.dims();
    auto ig_dims = in_grad->dims();
    auto idx_dims = index.dims();
D
dangqingqing 已提交
82 83 84
    PADDLE_ENFORCE_GT(og_dims.size(), 1);
    PADDLE_ENFORCE_GT(ig_dims.size(), 1);
    for (int64_t i = 1; i < og_dims.size(); ++i) {
85 86 87 88 89 90 91 92
      PADDLE_ENFORCE_EQ(og_dims[i], ig_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, og_dims);

    const T* og_data = out_grad.data<T>();
    const int* max_index = index.data<int>();
    T* ig_data = in_grad->data<T>();

Q
QI JUN 已提交
93
    SetConstant<platform::CPUDeviceContext, T> set_zero;
94 95 96
    set_zero(context, in_grad, static_cast<T>(0.0));
    int64_t num_seq = og_dims[0];
    int64_t dim = out_grad.numel() / num_seq;
D
dangqingqing 已提交
97 98
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t j = 0; j < dim; ++j) {
99 100 101 102 103 104 105
        int step_id = max_index[i * dim + j];
        ig_data[step_id * dim + j] = og_data[i * dim + j];
      }
    }
  }
};

106
template <typename T>
B
bingyanghuang 已提交
107
class LastSeqPoolFunctor {
108 109
 public:
  void operator()(const platform::CPUDeviceContext& context,
B
bingyanghuang 已提交
110 111
                  const framework::LoDTensor& input,
                  framework::Tensor* output) {
B
bingyanghuang 已提交
112 113 114
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();
B
bingyanghuang 已提交
115

B
bingyanghuang 已提交
116 117 118 119
    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
    auto lod = input.lod()[0];
    int seq_num = static_cast<int>(lod.size()) - 1;
B
bingyanghuang 已提交
120 121 122 123 124 125 126 127
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
      // Point to the begin of next sequence
      in_data += seq_len * item_size;
      // Copy the last item of sequence to output
      std::memcpy(out_data, (in_data - item_size), item_size * sizeof(T));
      out_data += item_size;
B
bingyanghuang 已提交
128
    }
B
bingyanghuang 已提交
129 130 131 132 133 134 135
  }
};

template <typename T>
class FirstSeqPoolFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
B
bingyanghuang 已提交
136 137
                  const framework::LoDTensor& input,
                  framework::Tensor* output) {
B
bingyanghuang 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();

    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
    auto lod = input.lod()[0];
    int seq_num = static_cast<int>(lod.size()) - 1;
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
      // Copy the first item of sequence to output
      std::memcpy(out_data, in_data, item_size * sizeof(T));
      // Point to the next sequence
      in_data += seq_len * item_size;
      out_data += item_size;
B
bingyanghuang 已提交
154
    }
B
bingyanghuang 已提交
155
  }
156 157
};

D
dzhwinter 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
 public:
  /* max pool has index output */
  void operator()(const platform::CPUDeviceContext& context,
                  const std::string pooltype, const framework::LoDTensor& input,
                  framework::Tensor* output,
                  framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
      math::MaxSeqPoolFunctor<T> max_pool;
      max_pool(context, input, output, index);
      return;
    }
B
bingyanghuang 已提交
171 172 173
    if (pooltype == "LAST") {
      math::LastSeqPoolFunctor<T> last_pool;
      last_pool(context, input, output);
174 175
      return;
    }
B
bingyanghuang 已提交
176 177 178 179 180
    if (pooltype == "FIRST") {
      math::FirstSeqPoolFunctor<T> first_pool;
      first_pool(context, input, output);
      return;
    }
D
dzhwinter 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    auto lod = input.lod()[0];
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      Tensor in_t =
          input.Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      Tensor out_t = output->Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = input.numel() / input.dims()[0];
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SUM") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template <typename T>
class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const std::string pooltype, const framework::Tensor& out_grad,
                  framework::LoDTensor* in_grad,
                  /* max pool has index */
                  const framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
      math::MaxSeqPoolGradFunctor<T> max_pool_grad;
      max_pool_grad(context, out_grad, *index, in_grad);
      return;
    }

    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(context, in_grad, 0);
    }
    auto lod = in_grad->lod()[0];
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      auto in_g_t = in_grad->Slice(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
      auto out_g_t = out_grad.Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = in_grad->numel() / in_grad->dims()[0];
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
      auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
      Eigen::DSizes<int, 2> bcast(h, 1);

      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SUM") {
        in_g_e.device(place) = (out_g_e).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "LAST") {
        in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
      } else if (pooltype == "FIRST") {
        in_g_e.chip(0, 0).device(place) = out_g_e_v;
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template class SequencePoolFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolFunctor<platform::CPUDeviceContext, double>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, double>;
259 260 261 262

}  // namespace math
}  // namespace operators
}  // namespace paddle