gan_conf_image.py 9.2 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
from paddle.trainer_config_helpers.layers import img_convTrans_layer
from paddle.trainer_config_helpers.activations import LinearActivation
from numpy.distutils.system_info import tmp

mode = get_config_arg("mode", str, "generator")
assert mode in set(["generator",
                    "discriminator",
                    "generator_training",
                    "discriminator_training"])

is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"

print('mode=%s' % mode)
noise_dim = 100
gf_dim = 64
df_dim = 64
sample_dim = 28 # image dim
c_dim = 1 # image color
s2, s4 = int(sample_dim/2), int(sample_dim/4), 
s8, s16 = int(sample_dim/8), int(sample_dim/16)

settings(
    batch_size=100,
    learning_rate=1e-4,
    learning_method=AdamOptimizer()
)

def convTrans_bn(input, channels, output_x, num_filters, imgSize, stride, name, 
                 param_attr, bias_attr, param_attr_bn):
    tmp =  imgSize - (output_x - 1) * stride
    if tmp <= 1 or tmp > 5:
        raise ValueError("convTrans input-output dimension does not fit")
    elif tmp <= 3:
        filter_size = tmp + 2
        padding = 1
    else:
        filter_size = tmp
        padding = 0
        
        
    convTrans = img_convTrans_layer(input, filter_size=filter_size, 
                   num_filters=num_filters,
                   name=name + "_convt", num_channels=channels,
                   act=LinearActivation(), groups=1, stride=stride, 
                   padding=padding, bias_attr=bias_attr,
                   param_attr=param_attr, shared_biases=True, layer_attr=None,
                   filter_size_y=None, stride_y=None, padding_y=None)
    
    convTrans_bn = batch_norm_layer(convTrans, 
                     act=ReluActivation(), 
                     name=name + "_convt_bn", 
                     bias_attr=bias_attr, 
                     param_attr=param_attr_bn,
                     use_global_stats=False)
    
    return convTrans_bn

def conv_bn(input, channels, imgSize, num_filters, output_x, stride, name, 
                 param_attr, bias_attr, param_attr_bn, bn):
    tmp =  imgSize - (output_x - 1) * stride
    if tmp <= 1 or tmp > 5:
        raise ValueError("conv input-output dimension does not fit")
    elif tmp <= 3:
        filter_size = tmp + 2
        padding = 1
    else:
        filter_size = tmp
        padding = 0

    print (imgSize, output_x, stride, filter_size, padding)
        
    if bn:
        conv = img_conv_layer(input, filter_size=filter_size, 
                   num_filters=num_filters,
                   name=name + "_conv", num_channels=channels,
                   act=LinearActivation(), groups=1, stride=stride, 
                   padding=padding, bias_attr=bias_attr,
                   param_attr=param_attr, shared_biases=True, layer_attr=None,
                   filter_size_y=None, stride_y=None, padding_y=None)
        
        conv_bn = batch_norm_layer(conv, 
                         act=ReluActivation(), 
                         name=name + "_conv_bn", 
                         bias_attr=bias_attr, 
                         param_attr=param_attr_bn,
                         use_global_stats=False)
        
        return conv_bn
    else:
        conv = img_conv_layer(input, filter_size=filter_size, 
                   num_filters=num_filters,
                   name=name + "_conv", num_channels=channels,
                   act=ReluActivation(), groups=1, stride=stride, 
                   padding=padding, bias_attr=bias_attr,
                   param_attr=param_attr, shared_biases=True, layer_attr=None,
                   filter_size_y=None, stride_y=None, padding_y=None)
        return conv
    
def generator(noise):
    """
    generator generates a sample given noise
    """
120 121 122
    param_attr = ParamAttr(is_static=is_discriminator_training,
                           initial_mean=0.0,
                           initial_std=0.02)
W
wangyang59 已提交
123
    bias_attr = ParamAttr(is_static=is_discriminator_training,
124 125
                           initial_mean=0.0,
                           initial_std=0.0)
W
wangyang59 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    
    param_attr_bn=ParamAttr(is_static=is_discriminator_training,
                           initial_mean=1.0,
                           initial_std=0.02)
    
    h1 = fc_layer(input=noise,
                    name="gen_layer_h1",
                    size=s8 * s8 * gf_dim * 4,
                    bias_attr=bias_attr,
                    param_attr=param_attr,
                    #act=ReluActivation())
                    act=LinearActivation())
    
    h1_bn = batch_norm_layer(h1, 
                     act=ReluActivation(), 
                     name="gen_layer_h1_bn", 
                     bias_attr=bias_attr, 
                     param_attr=param_attr_bn,
                     use_global_stats=False)
    
    h2_bn = convTrans_bn(h1_bn, 
                        channels=gf_dim*4, 
                        output_x=s8,
                        num_filters=gf_dim*2, 
                        imgSize=s4,
                        stride=2,
                        name="gen_layer_h2", 
                        param_attr=param_attr, 
                        bias_attr=bias_attr, 
                        param_attr_bn=param_attr_bn)
    
    h3_bn = convTrans_bn(h2_bn, 
                        channels=gf_dim*2, 
                        output_x=s4,
                        num_filters=gf_dim, 
                        imgSize=s2,
                        stride=2,
                        name="gen_layer_h3", 
                        param_attr=param_attr, 
                        bias_attr=bias_attr, 
                        param_attr_bn=param_attr_bn)
     
    
    return convTrans_bn(h3_bn,
                        channels=gf_dim, 
                        output_x=s2,
                        num_filters=c_dim, 
                        imgSize=sample_dim,
                        stride=2,
                        name="gen_layer_h4", 
                        param_attr=param_attr, 
                        bias_attr=bias_attr, 
                        param_attr_bn=param_attr_bn)


def discriminator(sample):
    """
    discriminator ouputs the probablity of a sample is from generator
    or real data.
    The output has two dimenstional: dimension 0 is the probablity
    of the sample is from generator and dimension 1 is the probabblity
    of the sample is from real data.
    """
    param_attr = ParamAttr(is_static=is_generator_training)
    bias_attr = ParamAttr(is_static=is_generator_training,
                          initial_mean=1.0,
                          initial_std=0)
    
    param_attr_bn=ParamAttr(is_static=is_generator_training,
                           initial_mean=1.0,
                           initial_std=0.02)
    
    h0 = conv_bn(sample, 
                 channels=c_dim, 
                 imgSize=sample_dim,
                 num_filters=df_dim, 
                 output_x=s2, 
                 stride=2, 
                 name="dis_h0", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=False)
    
    h1_bn = conv_bn(h0, 
                 channels=df_dim,
                 imgSize=s2,
                 num_filters=df_dim*2, 
                 output_x=s4, 
                 stride=2, 
                 name="dis_h1", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=True)

    h2_bn = conv_bn(h1_bn, 
                 channels=df_dim*2,
                 imgSize=s4,
                 num_filters=df_dim*4, 
                 output_x=s8, 
                 stride=2, 
                 name="dis_h2", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=True)
        
    return fc_layer(input=h2_bn, name="dis_prob", size=2,
                    bias_attr=bias_attr,
                    param_attr=param_attr,
                    act=SoftmaxActivation())



if is_generator_training:
    noise = data_layer(name="noise", size=noise_dim)
    sample = generator(noise)

if is_discriminator_training:
    sample = data_layer(name="sample", size=sample_dim * sample_dim*c_dim)

if is_generator_training or is_discriminator_training:
    label = data_layer(name="label", size=1)
    prob = discriminator(sample)
    cost = cross_entropy(input=prob, label=label)
    classification_error_evaluator(input=prob, label=label, name=mode+'_error')
    outputs(cost)

    
if is_generator:
    noise = data_layer(name="noise", size=noise_dim)
    outputs(generator(noise))