graph_pattern_detector.cc 128.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
16

17
#include "paddle/fluid/framework/ir/graph_traits.h"
18
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
19
#include "paddle/fluid/framework/operator.h"
20
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/string/pretty_log.h"
22

23 24 25 26
namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
27 28 29
using string::PrettyLog;
using string::Style;

30 31
size_t PDPattern::id_ = 0UL;

C
chengduo 已提交
32
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
33
  if (!name.empty()) {
34 35 36 37
    PADDLE_ENFORCE_EQ(
        node_map_.count(name), 0UL,
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
Y
Yan Chunwei 已提交
38 39 40
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
41
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
42 43 44 45
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
46
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
47
  if (!name.empty()) {
48 49 50 51
    PADDLE_ENFORCE_EQ(
        node_map_.count(name), 0UL,
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
52 53
  }

54
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
55
  auto *cur = nodes_.back().get();
56
  node_map_[name] = cur;
57 58 59
  return cur;
}

C
chengduo 已提交
60
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
61 62 63 64 65 66 67 68
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
69
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
70 71 72 73
  PADDLE_ENFORCE_NOT_NULL(
      a, platform::errors::NotFound("PDNode %s is not found.", a->name()));
  PADDLE_ENFORCE_NOT_NULL(
      b, platform::errors::NotFound("PDNode %s is not found.", b->name()));
74 75 76
  PADDLE_ENFORCE_NE(a, b,
                    platform::errors::PermissionDenied(
                        "Cannot connect the same node in the graph."));
77 78 79
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
80
void GraphPatternDetector::operator()(Graph *graph,
81
                                      GraphPatternDetector::handle_t handler) {
82 83 84 85
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }

86 87
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
Z
Zhang Ting 已提交
88
  SortSubgraphs(&subgraphs);
89
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
90
  ValidateByNodeRole(&subgraphs);
91

Y
Yan Chunwei 已提交
92
  if (subgraphs.empty()) return;
93

94
  int id = 0;
C
chengduo 已提交
95
  for (auto &g : subgraphs) {
M
minqiyang 已提交
96
    VLOG(3) << "optimizing #" << id++ << " subgraph";
97 98 99 100
    handler(g, graph);
  }
}

C
chengduo 已提交
101
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
M
minqiyang 已提交
102
  VLOG(3) << "mark pdnodes in graph";
103 104
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
105 106
  for (auto &node : GraphTraits::DFS(graph)) {
    for (const auto &pdnode : pattern_.nodes()) {
107
      if (pdnode->Tell(&node)) {
108
        VLOG(4) << "Node " << node.Name() << " marked as " << pdnode->name();
109 110 111 112
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
113
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
114
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
115
    if (!pdnodes2nodes_.count(pdnode.get())) {
M
minqiyang 已提交
116
      VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
117
      // return false;
Y
Yan Chunwei 已提交
118 119
    }
  }
M
minqiyang 已提交
120
  VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
121

122 123 124
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
125
// The intermediate Nodes can only link to the nodes inside the pattern, or this
T
tianshuo78520a 已提交
126
// subgraph will be dropped.
Y
Yan Chunwei 已提交
127
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
128
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
129 130 131 132 133
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
          subgraphs->begin(), subgraphs->end(),
C
chengduo 已提交
134
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
135
            // Collect the inputs and outputs.
136
            std::set<Node *> ios;
C
chengduo 已提交
137
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
138 139 140 141
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
142
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
143
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
144
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
145 146 147 148
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
149
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
150 151 152 153 154 155 156 157 158 159 160
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

161
struct HitGroup {
162
  std::map<PDNode *, Node *> roles;
163

C
chengduo 已提交
164
  bool Match(Node *node, PDNode *pat) {
165
    if (nodes_.count(node)) {
T
Tao Luo 已提交
166 167 168 169 170
      if (roles.count(pat) && roles[pat] == node) return true;
      return false;
    } else {
      if (roles.count(pat) && roles[pat] != node) return false;
      return true;
171
    }
172 173
  }

C
chengduo 已提交
174
  void Register(Node *node, PDNode *pat) {
175 176 177 178 179
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
180
  std::set<Node *> nodes_;
181 182 183
};

// Tell whether Node a links to b.
C
chengduo 已提交
184 185
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
186 187 188 189 190 191 192
    if (b == node) {
      return true;
    }
  }
  return false;
}

193 194
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
195
  // Init empty subgraphs.
196
  std::vector<GraphPatternDetector::subgraph_t> result;
197
  std::vector<HitGroup> init_groups;
198
  std::array<std::vector<HitGroup>, 2> bi_records;
C
chengduo 已提交
199
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
200
                                               : pattern_.edges().front().first;
201
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
202
  for (auto *node : pdnodes2nodes_[first_pnode]) {
203 204 205 206 207 208 209 210 211 212
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
213
  for (const auto &edge : pattern_.edges()) {
M
minqiyang 已提交
214
    VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
215
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
216 217
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
218 219
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
220
    cur_groups.clear();
221
    if (pre_groups.empty()) break;
222
    // source -> target
C
chengduo 已提交
223 224
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
M
minqiyang 已提交
225
        VLOG(8) << "check " << source->id() << " -- " << target->id();
226
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
227
        for (const auto &group : pre_groups) {
T
Tao Luo 已提交
228 229 230 231 232 233
          if (IsNodesLink(source, target)) {
            HitGroup new_group = group;
            bool flag = new_group.Match(source, edge.first) &&
                        new_group.Match(target, edge.second);
            if (flag) {
              new_group.Register(source, edge.first);
234 235 236 237 238 239 240 241
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
M
minqiyang 已提交
242
    VLOG(3) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
243 244
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
M
minqiyang 已提交
245
        VLOG(4) << "node " << item.second->id() << " as " << item.first->name();
Y
Yan Chunwei 已提交
246
      }
M
minqiyang 已提交
247
      VLOG(4) << "=========================================================";
Y
Yan Chunwei 已提交
248
    }
249 250
  }

C
chengduo 已提交
251
  for (auto &group : bi_records[step % 2]) {
252
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
253
    for (auto &role : group.roles) {
254 255 256 257 258 259 260
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

Y
Yan Chunwei 已提交
261 262
struct GraphItemLessThan {
  bool operator()(const std::pair<PDNode *, Node *> &a,
Y
Yan Chunwei 已提交
263
                  const std::pair<PDNode *, Node *> &b) {
Y
Yan Chunwei 已提交
264 265 266 267 268
    if (a.first != b.first) {
      return a.first < b.first;
    } else {
      return a.second < b.second;
    }
Y
Yan Chunwei 已提交
269
  }
Y
Yan Chunwei 已提交
270
};
Y
Yan Chunwei 已提交
271

272 273
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
274
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
275
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
276
  if (subgraphs->empty()) return;
277
  std::vector<GraphPatternDetector::subgraph_t> result;
278

279
  std::set<size_t> set;
Y
Yan Chunwei 已提交
280
  std::hash<std::string> hasher;
C
chengduo 已提交
281
  for (auto &g : *subgraphs) {
Y
Yan Chunwei 已提交
282 283
    // Sort the items in the sub-graph, and transform to a string key.
    std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
Y
Yan Chunwei 已提交
284
    std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
Y
Yan Chunwei 已提交
285 286 287
    std::stringstream ss;
    for (auto &item : sorted_keys) {
      ss << item.first << ":" << item.second;
288
    }
Y
Yan Chunwei 已提交
289
    auto key = hasher(ss.str());
290 291 292 293 294 295 296 297
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

Z
Zhang Ting 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
void GraphPatternDetector::SortSubgraphs(
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
  if (subgraphs->empty()) return;
  bool has_bn_add_act = false;
  for (auto &subgraph : *subgraphs) {
    for (auto &item : subgraph) {
      if (item.first->name().find("bn_add_act") != std::string::npos) {
        has_bn_add_act = true;
        break;
      }
    }
  }
  if (!has_bn_add_act) {
    return;
  }

  std::sort(
      subgraphs->begin(), subgraphs->end(),
      [](const GraphPatternDetector::subgraph_t &a,
         const GraphPatternDetector::subgraph_t &b) {
        for (auto &item : a) {
          if (item.first->name().find("bn_add_act") != std::string::npos &&
              item.first->name().find("bn_reserve_space") !=
                  std::string::npos) {
            auto it_b = b.find(item.first);
            if (it_b != b.end()) {
              if (item.second->Name() != it_b->second->Name()) {
                return item.second->Name() < it_b->second->Name();
              } else {
                return false;
              }
            } else {
              return false;
            }
          }
        }
        return false;
      });
}

338
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
339
    std::vector<subgraph_t> *subgraphs) {
340
  std::vector<subgraph_t> result;
341
  std::set<Node *> node_set;
342

C
chengduo 已提交
343
  for (const auto &subgraph : *subgraphs) {
344
    bool valid = true;
C
chengduo 已提交
345
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
346
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
347 348 349 350 351
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
352
      for (auto &item : subgraph) {
353 354 355 356 357 358 359 360
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

361 362 363 364 365
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
366 367
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
368 369 370 371 372
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
373
  for (const auto &edge : edges()) {
374 375 376 377
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      LOG(ERROR) << "no node " << edge.first << " " << edge.second;
      continue;
    }
C
chengduo 已提交
378 379
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
380 381 382 383 384
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
385
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
386
  // extend outlinks.
C
chengduo 已提交
387
  for (PDNode *x : others) {
388 389 390 391 392
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
393
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
394
  // extend outlinks.
C
chengduo 已提交
395
  for (PDNode *x : others) {
396 397 398 399 400
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
401 402
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
403 404
  return this;
}
C
chengduo 已提交
405 406 407

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
408 409 410 411
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
412

S
shentanyue 已提交
413 414 415 416 417 418 419
PDNode *PDNode::assert_is_not_op_type(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
    return x && x->IsOp() && x->Op()->Type() != op_type;
  });
  return this;
}

C
chengduo 已提交
420 421 422 423 424
PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

Z
Zhen Wang 已提交
425 426 427 428 429 430 431
PDNode *PDNode::assert_var_dtype(proto::VarType::Type dtype) {
  assert_is_var();
  asserts_.emplace_back(
      [dtype](Node *x) { return x->Var()->GetDataType() == dtype; });
  return this;
}

C
chengduo 已提交
432 433
PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
434 435
  return this;
}
C
chengduo 已提交
436 437

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
438
  assert_is_var();
C
chengduo 已提交
439
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
440 441
  return this;
}
C
chengduo 已提交
442 443

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
444
  assert_is_var();
C
chengduo 已提交
445
  asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
446 447
  return this;
}
C
chengduo 已提交
448 449 450

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
                                       const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
451 452
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
453 454
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
455 456 457
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
458 459 460 461 462
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
463 464 465

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
                                        const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
466
  assert_is_var();
C
chengduo 已提交
467 468
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
469 470 471
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
472 473 474 475 476
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
477 478

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
479
  assert_is_var();
C
chengduo 已提交
480 481
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
482 483 484 485 486 487 488 489 490
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
491 492

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
493
  assert_is_var();
C
chengduo 已提交
494 495
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
496 497 498 499 500 501 502 503 504
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
505 506

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
507
  assert_is_var();
C
chengduo 已提交
508 509
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
510 511 512 513 514 515 516 517
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
518 519 520

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
521 522 523 524
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
Z
Zhen Wang 已提交
525

C
chengduo 已提交
526
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
527
  assert_is_var();
C
chengduo 已提交
528 529
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
530 531 532 533 534 535 536 537
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
538

Z
Zhen Wang 已提交
539 540 541 542 543 544 545 546 547 548
PDNode *PDNode::assert_is_not_op_input(const std::string &argument) {
  assert_is_op();
  asserts_.emplace_back([=](Node *x) {
    auto &ins = x->Op()->Inputs();
    auto iter = ins.find(argument);
    return iter == ins.end() || iter->second.empty();
  });
  return this;
}

C
chengduo 已提交
549 550
PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
551 552 553 554
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
555 556

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
557
  assert_is_op(op_type);
C
chengduo 已提交
558
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
559 560
  return this;
}
C
chengduo 已提交
561 562

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
563
  assert_is_op(op_type);
C
chengduo 已提交
564
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
565 566
  return this;
}
C
chengduo 已提交
567

568 569 570 571 572 573 574 575 576 577
PDNode *PDNode::assert_has_n_inputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
  return this;
}

PDNode *PDNode::assert_has_n_outputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
  return this;
}

C
chengduo 已提交
578
PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
579 580 581 582
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
PDNode *PDNode::assert_is_only_input_of_ops(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type()) &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_only_output_of_ops(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type()) &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}

C
chengduo 已提交
694 695
bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
696 697 698 699 700 701
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
702 703

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
704 705 706 707 708 709 710 711
  PADDLE_ENFORCE_EQ(
      var->IsVar(), true,
      platform::errors::InvalidArgument(
          "First parameter of function IsNthInput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthInput must be Node::Op"));
712 713
  if (!HasInput(op, argument) || op->Op()->Input(argument).size() <= nth)
    return false;
714 715
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
716

717
bool HasInput(Node *op, const std::string &argument) {
718 719 720 721
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "First parameter of function HasInput must be Node::Op"));
722 723 724 725 726 727
  auto const &names = op->Op()->InputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

728 729 730 731
bool HasOutput(Node *op, const std::string &argument) {
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
732
          "First parameter of function HasOutput must be Node::Op"));
733 734 735 736 737 738
  auto const &names = op->Op()->OutputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

C
chengduo 已提交
739
bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
740 741 742 743 744 745 746 747
  PADDLE_ENFORCE_EQ(
      var->IsVar(), true,
      platform::errors::InvalidArgument(
          "First parameter of function IsNthOutput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthOutput must be Node::Op"));
748 749
  if (!HasOutput(op, argument) || op->Op()->Output(argument).size() <= nth)
    return false;
750 751
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
752 753 754 755 756

void GraphSafeRemoveNodes(Graph *graph,
                          const std::unordered_set<const Node *> &nodes) {
  for (auto *node : nodes) {
    graph->RemoveNode(const_cast<Node *>(node));
757 758
  }

C
chengduo 已提交
759
  for (auto *node : graph->Nodes()) {
760 761
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
762
        it = const_cast<Node *>(node)->inputs.erase(it);
763
      } else {
764
        it++;
765
      }
766 767 768
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
769
        it = const_cast<Node *>(node)->outputs.erase(it);
770
      } else {
771
        it++;
772
      }
773 774 775
    }
  }
}
C
chengduo 已提交
776 777 778

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
779 780 781 782 783 784 785
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
786
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
787
                                     const std::string &conv_type,
S
Sylwester Fraczek 已提交
788 789
                                     bool with_eltwise_add) {
  // Create Operators
790 791
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
S
Sylwester Fraczek 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
805
                              ->assert_is_op_input(conv_type, "Filter");
S
Sylwester Fraczek 已提交
806 807 808

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
809
                           ->assert_is_only_output_of_op(conv_type);
S
Sylwester Fraczek 已提交
810 811 812 813 814 815 816 817 818

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
819
                           ->assert_is_persistable_var()
S
Sylwester Fraczek 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
833 834
                           ->assert_is_op_input("batch_norm", "Scale")
                           ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
835 836 837 838
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
839 840
                          ->assert_is_op_input("batch_norm", "Bias")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
841 842 843 844
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
845 846
                          ->assert_is_op_input("batch_norm", "Mean")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
847 848 849 850
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
851 852
                              ->assert_is_op_input("batch_norm", "Variance")
                              ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
853 854 855 856

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
857
                         ->assert_is_op_output("batch_norm", "Y");
S
Sylwester Fraczek 已提交
858 859 860

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
861 862
                              ->assert_is_op_output("batch_norm", "MeanOut")
                              ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
863 864 865 866

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
867 868
          ->assert_is_op_output("batch_norm", "VarianceOut")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
869

870 871 872 873
  auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr())
                                ->AsOutput()
                                ->assert_is_op_output("batch_norm", "SavedMean")
                                ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
874 875 876 877

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
878 879
          ->assert_is_op_output("batch_norm", "SavedVariance")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
        ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  } else {
    batch_norm_op
        ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  }
  return bn_out_var;
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
PDNode *patterns::ConvActivation::operator()(
    paddle::framework::ir::PDNode *conv_input, std::string conv_type,
    std::string activation_type) {
  // Create Operators
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
  // Create variables
  // Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input(conv_type, "Filter");
  // intermediate variable, will be removed in the IR after fuse.
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op(conv_type)
                           ->assert_is_op_input(activation_type);
  // output
  auto *activation_out_var = pattern->NewNode(activation_out_repr())
                                 ->AsOutput()
                                 ->assert_is_op_output(activation_type);

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  activation_op->LinksFrom({conv_out_var}).LinksTo({activation_out_var});
  return activation_out_var;
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
PDNode *patterns::ElementwiseActivation::operator()(
    paddle::framework::ir::PDNode *elementwise_a,
    const std::string &elementwise_type, const std::string &activation_type) {
  // Create Operators
  elementwise_a->assert_is_op_input(elementwise_type, "X");
  auto *elementwise_op =
      pattern->NewNode(elementwise_repr())->assert_is_op(elementwise_type);
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
  // Create variables
  auto *elementwise_b = pattern->NewNode(elementwise_b_repr())
                            ->AsInput()
                            ->assert_is_op_input(elementwise_type, "Y");
  // intermediate variable, will be removed in the IR after fuse.
  auto *elementwise_out_var =
      pattern->NewNode(elementwise_out_repr())
          ->AsIntermediate()
          ->assert_is_only_output_of_op(elementwise_type)
          ->assert_is_op_input(activation_type);
  // output
  auto *activation_out_var = pattern->NewNode(activation_out_repr())
                                 ->AsOutput()
                                 ->assert_is_op_output(activation_type);

  elementwise_op->LinksFrom({elementwise_a, elementwise_b})
      .LinksTo({elementwise_out_var});
  activation_op->LinksFrom({elementwise_out_var}).LinksTo({activation_out_var});
  return activation_out_var;
}

T
tensor-tang 已提交
960 961 962 963
PDNode *patterns::SeqConvEltAddRelu::operator()(
    paddle::framework::ir::PDNode *seqconv_input) {
  // Create Operators
  seqconv_input->assert_is_op_input("sequence_conv", "X");
T
tensor-tang 已提交
964 965
  auto *seqconv_op = pattern->NewNode(seqconv_repr())
                         ->assert_is_op("sequence_conv")
966
                         ->assert_has_n_inputs(2)
T
tensor-tang 已提交
967 968
                         ->assert_op_attr<bool>("paddingTrainable", false)
                         ->assert_op_attr<int>("contextStride", 1);
T
tensor-tang 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

  auto *eltadd_op =
      pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
  // Create variables
  // Filter
  auto *seqconv_weight_var =
      pattern->NewNode(seqconv_weight_repr())
          ->AsInput()
          ->assert_is_persistable_var()
          ->assert_is_op_input("sequence_conv", "Filter");
  // Bias
  auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add");
  // intermediate variable, will be removed in the IR after fuse.
  auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
                              ->AsIntermediate()
                              ->assert_is_only_output_of_op("sequence_conv")
                              ->assert_is_op_input("elementwise_add");
  auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
                             ->AsIntermediate()
                             ->assert_is_only_output_of_op("elementwise_add")
                             ->assert_is_only_input_of_op("relu");
  // output
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("relu");

  seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
      .LinksTo({seqconv_out_var});
  eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
      .LinksTo({eltadd_out_var});
  relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
1006
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
1007
                                 bool with_bias, bool with_relu) {
Y
Yan Chunwei 已提交
1008 1009
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
1010
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
1011

C
chengduo 已提交
1012
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
1013 1014 1015 1016
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
1017
  auto *mul_out_var =
Y
Yan Chunwei 已提交
1018 1019
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

1020 1021
  // Add links.
  mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
Y
Yan Chunwei 已提交
1022 1023 1024 1025 1026
  if (!with_bias) {  // not with bias
    return mul_out_var;
  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
1027
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
1028 1029
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
1030
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
1031
                     ->assert_is_op_input("elementwise_add")
1032
                     ->assert_is_persistable_var()
Y
Yan Chunwei 已提交
1033 1034
                     ->AsInput();

1035 1036 1037 1038
    auto *elementwise_add_out_var =
        pattern->NewNode(elementwise_add_out_repr())
            ->AsOutput()
            ->assert_is_op_output("elementwise_add");
Y
Yan Chunwei 已提交
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    elementwise_add->LinksFrom({mul_out_var, bias})
        .LinksTo({elementwise_add_out_var});
    if (!with_relu) {
      return elementwise_add_out_var;
    } else {
      elementwise_add_out_var->AsIntermediate()->assert_is_op_input("relu");
      // Create operators.
      auto *relu = pattern->NewNode(relu_repr())->assert_is_op("relu");
      auto *relu_out_var = pattern->NewNode(relu_out_repr())
                               ->AsOutput()
                               ->assert_is_op_output("relu");

      relu->LinksFrom({elementwise_add_out_var}).LinksTo({relu_out_var});
      return relu_out_var;
    }
1055 1056
  }
}
T
tensor-tang 已提交
1057

1058 1059 1060 1061 1062 1063 1064
PDNode *patterns::FCMKLDNN::operator()(paddle::framework::ir::PDNode *x,
                                       bool with_bias) {
  // Create shared nodes.
  x->assert_is_op_input("fc", "Input");

  auto *fc_op = pattern->NewNode(fc_repr())->assert_is_op("fc");
  // Create variables
M
Michał Gallus 已提交
1065 1066 1067 1068
  // Input
  auto *input_var = pattern->NewNode(input_repr())
                        ->AsInput()
                        ->assert_is_op_input("fc", "Input");
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
  // Filter
  auto *fc_weight_var = pattern->NewNode(weights_repr())
                            ->AsInput()
                            ->assert_is_op_input("fc", "W");
  // Bias
  auto *fc_bias_var = pattern->NewNode(bias_repr())
                          ->AsInput()
                          ->assert_is_op_input("fc", "Bias");
  // Output
  auto *fc_out_var = pattern->NewNode(output_repr())
                         ->AsOutput()
                         ->assert_is_op_output("fc", "Out")
                         ->assert_is_only_output_of_op("fc");

M
Michał Gallus 已提交
1083 1084
  fc_op->LinksFrom({input_var, fc_weight_var, fc_bias_var})
      .LinksTo({fc_out_var});
1085 1086 1087
  return fc_out_var;
}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
PDNode *patterns::FCActOneDNN::operator()(const std::string &act_type) {
  auto *fc = pattern->NewNode(fc_repr())->assert_is_op("fc");
  auto *fc_out = pattern->NewNode(fc_out_repr())
                     ->assert_is_op_output("fc", "Out")
                     ->assert_is_op_input(act_type);
  auto *act =
      pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
  auto *act_out = pattern->NewNode(act_out_repr())
                      ->assert_is_op_output(act_type, "Out")
                      ->AsOutput();

  fc->LinksTo({fc_out});
  act->LinksFrom({fc_out}).LinksTo({act_out});

  return act_out;
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
PDNode *patterns::SoftplusActivation::operator()(std::string activation_type) {
  // Create Operators
  auto *softplus_op =
      pattern->NewNode(softplus_repr())->assert_is_op("softplus");
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
  // intermediate variable, will be removed in the IR after fuse.
  auto *softplus_out = pattern->NewNode(softplus_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("softplus")
                           ->assert_is_op_input(activation_type);
  // output
  auto *activation_out = pattern->NewNode(activation_out_repr())
                             ->AsOutput()
                             ->assert_is_op_output(activation_type);

  softplus_op->LinksTo({softplus_out});
  activation_op->LinksFrom({softplus_out}).LinksTo({activation_out});
  return activation_out;
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
1144
PDNode *patterns::LSTM::operator()(PDNode *x) {
1145
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
1146
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
1147
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1148
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1149
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
1150 1151 1152 1153 1154

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
1155 1156
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
1157

Y
Yan Chunwei 已提交
1158 1159 1160 1161 1162
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
1163 1164 1165 1166 1167

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
1168

C
chengduo 已提交
1169
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
1170
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
1171
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
1172
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1173
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1174
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
1175

Y
Yan Chunwei 已提交
1176
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
1177 1178
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
1179
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
1180 1181
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
1182
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
1183
  // below are intermediate
Y
Yan Chunwei 已提交
1184 1185 1186 1187
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
1188

T
tensor-tang 已提交
1189 1190 1191 1192
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
1193 1194 1195 1196 1197
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

Z
Zhen Wang 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
PDNode *patterns::BatchNormAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->assert_is_op_input("batch_norm", "Variance");
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->assert_is_op_input("batch_norm", "Mean");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_has_n_outputs(1);

  bn_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom(
        {bn_x_var, bn_scale_var, bn_bias_var, bn_variance_var, bn_mean_var})
      .LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var,
                bn_saved_mean_var, bn_reserve_space, bn_out_var});
  act->LinksFrom({bn_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);
  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");
  // ReserveSpace as the output is equal to:
  // data_layout == 'NHWC' && FLAGS_cudnn_batchnorm_spatial_persistent == true
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"));
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  bn_grad
      ->LinksFrom({bn_x_var, d_intermediate_var, bn_scale_var, bn_bias_var,
                   bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space})
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
PDNode *patterns::BatchNormActOneDNN::operator()(const std::string &act_type) {
  auto *bn_x = pattern->NewNode(bn_in_repr())
                   ->AsInput()
                   ->assert_is_op_input("batch_norm", "X");
  auto *bn = pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  auto *bn_out = pattern->NewNode(bn_out_repr())
                     ->assert_is_op_output("batch_norm", "Y")
                     ->assert_is_op_input(act_type);
  auto *act =
      pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
  auto *act_out = pattern->NewNode(act_out_repr())
                      ->assert_is_op_output(act_type, "Out")
                      ->AsOutput();

  bn->LinksFrom({bn_x}).LinksTo({bn_out});
  act->LinksFrom({bn_out}).LinksTo({act_out});

  return act_out;
}

Z
Zhang Ting 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
PDNode *patterns::BatchNormAddAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  bn_x_var->assert_is_op_input("batch_norm", "X")
      ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_var_dtype(proto::VarType::FP16);

  bn_out_var->assert_is_op_input("elementwise_add");

  auto *elewise_add =
      pattern->NewNode(elewise_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_in_var = pattern->NewNode(elewise_add_in_repr())
                                 ->assert_is_not_ctrl_var()
                                 ->assert_is_op_input("elementwise_add")
                                 ->assert_var_dtype(proto::VarType::FP16);

  auto *elewise_add_out_var =
      pattern->NewNode(elewise_add_out_repr())
          ->assert_is_op_output("elementwise_add", "Out")
          ->assert_has_n_outputs(1);

  elewise_add_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom({bn_x_var, bn_scale_var, bn_bias_var})
      .LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var,
                bn_saved_mean_var, bn_reserve_space, bn_out_var});
  elewise_add->LinksFrom({elewise_add_in_var, bn_out_var})
      .LinksTo({elewise_add_out_var});
  act->LinksFrom({elewise_add_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormAddActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *elewise_add_grad = pattern->NewNode(elewise_add_grad_repr())
                               ->assert_is_op("elementwise_add_grad");
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_act_x_var =
      pattern->NewNode(d_act_x_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);  // d_act_x

  d_act_x_var->AsIntermediate()->assert_is_op_input("elementwise_add_grad");

  auto *d_elewise_add_in_var =
      pattern->NewNode(d_elewise_add_in_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_1
  auto *d_bn_out_var =
      pattern->NewNode(d_bn_out_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_2

  d_bn_out_var->assert_is_op_input("batch_norm_grad", GradVarName("Y"));

  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");

  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"))
          ->assert_var_dtype(proto::VarType::FP16);
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var}).LinksTo({d_act_x_var});

  elewise_add_grad->LinksFrom({d_act_x_var})
      .LinksTo({d_elewise_add_in_var, d_bn_out_var});

  bn_grad
      ->LinksFrom({bn_x_var, d_bn_out_var, bn_scale_var, bn_bias_var,
                   bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space})
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

C
chengduo 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::LinearAct::operator()(
    paddle::framework::ir::PDNode *linear_x_var,
    const std::unordered_set<std::string> &act_types, bool with_grad_link,
    bool is_act_grad_x_from_act) {
  auto *matmul_w_var =
      pattern->NewNode(matmul_w_repr())->assert_is_op_input("matmul_v2", "Y");

  auto *matmul = pattern->NewNode(matmul_repr())->assert_is_op("matmul_v2");

  auto *matmul_out_var = pattern->NewNode(matmul_out_repr())
                             ->assert_is_op_output("matmul_v2", "Out");

  matmul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add", "X");

  auto *ele_bias_var = pattern->NewNode(ele_bias_repr())
                           ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  matmul->LinksFrom({linear_x_var, matmul_w_var}).LinksTo({matmul_out_var});
  ele_add->LinksFrom({matmul_out_var, ele_bias_var}).LinksTo({ele_out_var});

  if (with_grad_link) {
    matmul_out_var->assert_is_op_input("elementwise_add_grad", "X");
    auto *elementwise_add_grad_op = pattern->NewNode("elementwise_add_grad")
                                        ->assert_is_op("elementwise_add_grad");
    elementwise_add_grad_op->LinksFrom({matmul_out_var});
  }

  if (act_types.size() > 0) {
    ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

    auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
    auto *act_out_var = pattern->NewNode(act_out_repr())
                            ->assert_is_ops_output(act_types, "Out");

    act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

    if (with_grad_link && !is_act_grad_x_from_act) {
      std::unordered_set<std::string> act_grad_types;
      for (const auto &act : act_types) {
        std::string act_grad(act);
        act_grad.append("_grad");
        act_grad_types.insert(act_grad);
      }

      ele_out_var->assert_is_ops_input(act_grad_types, "X");
      auto *act_grad_op =
          pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
      act_grad_op->LinksFrom({ele_out_var});
    }

    return act_out_var;
  }

  return ele_out_var;
}

PDNode *patterns::ElewiseAddMatmulAct::operator()(
    paddle::framework::ir::PDNode *dout_var,
    const std::unordered_set<std::string> &act_grad_types,
    bool without_x_gradient, bool is_act_grad_x_from_act) {
  auto *ele_grad_bias_var =
      pattern->NewNode(ele_grad_bias_repr())
          ->assert_is_op_input("elementwise_add_grad", "Y");
  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");
  auto *ele_grad_dx_var =
      pattern->NewNode(ele_grad_dx_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
  auto *ele_grad_dbias_var =
      pattern->NewNode(ele_grad_dbias_repr())
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
  ele_add_grad->LinksFrom({dout_var, ele_grad_bias_var})
      .LinksTo({ele_grad_dx_var, ele_grad_dbias_var});

  ele_grad_dx_var->AsIntermediate()->assert_is_op_input("matmul_v2_grad",
                                                        GradVarName("Out"));

  auto *matmul_grad_x_var = pattern->NewNode(matmul_grad_x_repr())
                                ->assert_is_op_input("matmul_v2_grad", "X");
  auto *matmul_grad_w_var = pattern->NewNode(matmul_grad_w_repr())
                                ->assert_is_op_input("matmul_v2_grad", "Y");
  auto *matmul_grad =
      pattern->NewNode(matmul_grad_repr())->assert_is_op("matmul_v2_grad");
  auto *matmul_grad_dx_var =
      pattern->NewNode(matmul_grad_dx_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("X"));
  auto *matmul_grad_dw_var =
      pattern->NewNode(matmul_grad_dw_repr())
          ->assert_is_op_output("matmul_v2_grad", GradVarName("Y"));
  matmul_grad->LinksFrom(
      {ele_grad_dx_var, matmul_grad_x_var, matmul_grad_w_var});
  if (without_x_gradient) {
    matmul_grad->LinksTo({matmul_grad_dw_var});
  } else {
    matmul_grad->LinksTo({matmul_grad_dx_var, matmul_grad_dw_var});
  }

  if (!without_x_gradient && act_grad_types.size() > 0) {
    matmul_grad_dx_var->AsIntermediate()->assert_is_ops_input(
        act_grad_types, GradVarName("Out"));

    auto *act_grad =
        pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
    auto *act_grad_dx_var =
        pattern->NewNode(act_grad_dx_repr())
            ->assert_is_ops_output(act_grad_types, GradVarName("X"));

    auto *act_grad_x_var = matmul_grad_x_var;
    if (!is_act_grad_x_from_act) {
      auto *ele_out_var = pattern->NewNode(ele_out_repr())
                              ->assert_is_ops_input(act_grad_types, "X");
      act_grad_x_var = ele_out_var;
    }

    act_grad->LinksFrom({matmul_grad_dx_var, act_grad_x_var})
        .LinksTo({act_grad_dx_var});
    return act_grad;
  }

  return matmul_grad;
}

1696
// conv_type: conv2d, conv3d, conv2d_transpose
M
Michal Gallus 已提交
1697
PDNode *patterns::ConvBias::operator()(
1698
    paddle::framework::ir::PDNode *conv_input, std::string conv_type) {
M
Michal Gallus 已提交
1699
  // Create Operators
1700 1701
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
M
Michal Gallus 已提交
1702 1703 1704 1705
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
Y
Yihua Xu 已提交
1706 1707 1708
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
1709
                              ->assert_is_op_input(conv_type, "Filter");
M
Michal Gallus 已提交
1710
  // intermediate variable, will be removed in the IR after fuse.
Y
Yihua Xu 已提交
1711 1712
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
1713
                           ->assert_is_only_output_of_op(conv_type)
Y
Yihua Xu 已提交
1714
                           ->assert_is_op_input("elementwise_add");
M
Michal Gallus 已提交
1715 1716 1717
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
1718
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

1730 1731 1732 1733
PDNode *patterns::Conv::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

  auto input_var = pattern->NewNode(conv_input_repr())
1734
                       ->AsInput()
1735 1736 1737
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
1738
                        ->AsInput()
1739 1740 1741
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
1742
                        ->AsOutput()
1743 1744
                        ->assert_is_op_output("conv2d", "Output");

1745 1746 1747 1748
  conv_op->LinksFrom({input_var, filter_var}).LinksTo({output_var});
  return output_var;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
PDNode *patterns::Transpose::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_in = pattern->NewNode(transpose_in_repr())
                          ->AsInput()
                          ->assert_is_op_input("transpose2");
  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("transpose2", "Out");

  prev_op->LinksTo({transpose_in});
  transpose_op->LinksFrom({transpose_in}).LinksTo({transpose_out});
  return transpose_out;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
PDNode *patterns::Reshape::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");

  auto reshape_in = pattern->NewNode(reshape_in_repr())
                        ->AsInput()
                        ->assert_is_op_input("reshape2", "X");
  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("reshape2", "Out");

  prev_op->LinksTo({reshape_in});
  reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
  return reshape_out;
}

Z
Zuza 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
PDNode *patterns::Slice::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto slice_op = pattern->NewNode(slice_op_repr())->assert_is_op("slice");

  auto slice_in = pattern->NewNode(slice_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("slice", "Input");
  auto slice_out = pattern->NewNode(slice_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("slice", "Out");

  prev_op->LinksTo({slice_in});
  slice_op->LinksFrom({slice_in}).LinksTo({slice_out});
  return slice_out;
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
PDNode *patterns::NearestInterp::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto nearest_interp_op =
      pattern->NewNode(nearest_interp_op_repr())
          ->assert_is_ops({"nearest_interp", "nearest_interp_v2"});

  auto nearest_interp_in =
      pattern->NewNode(nearest_interp_in_repr())
          ->AsInput()
          ->assert_is_ops_input({"nearest_interp", "nearest_interp_v2"}, "X");
  auto nearest_interp_out =
      pattern->NewNode(nearest_interp_out_repr())
          ->AsOutput()
          ->assert_is_ops_output({"nearest_interp", "nearest_interp_v2"},
                                 "Out");

  prev_op->LinksTo({nearest_interp_in});
  nearest_interp_op->LinksFrom({nearest_interp_in})
      .LinksTo({nearest_interp_out});
  return nearest_interp_out;
}

1825
PDNode *patterns::Matmul::operator()() {
1826 1827 1828 1829 1830 1831 1832
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
1833
                         ->assert_is_persistable_var()
1834 1835 1836 1837 1838 1839 1840 1841 1842
                         ->assert_is_op_input("matmul", "Y");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
// MatmulV2: tensor * weight
PDNode *patterns::MatmulV2Weight::operator()() {
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");

  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_persistable_var()  // Y is weight
                            ->assert_is_op_input("matmul_v2", "Y");
  auto matmul_v2_out = pattern->NewNode(matmul_v2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("matmul_v2", "Out");

  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({matmul_v2_out});
  return matmul_v2_out;
}

// MatmulV2: tensor * tensor or tensor * weight
1865
PDNode *patterns::MatmulV2::operator()() {
1866 1867
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877
  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "Y");
  auto matmul_v2_out = pattern->NewNode(matmul_v2_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("matmul_v2", "Out");
1878

1879 1880 1881
  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({matmul_v2_out});
  return matmul_v2_out;
1882 1883
}

H
heliqi 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
PDNode *patterns::MatmulScale::operator()() {
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "Y");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_in_x = pattern->NewNode(scale_in_x_repr())
                        ->assert_is_op_output("matmul", "Out")
                        ->assert_is_op_input("scale", "X");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({scale_in_x});
  scale_op->LinksFrom({scale_in_x}).LinksTo({scale_out});
  return scale_out;
}

PDNode *patterns::MatmulV2Scale::operator()() {
  auto matmul_v2_op =
      pattern->NewNode(matmul_v2_op_repr())->assert_is_op("matmul_v2");
  auto matmul_v2_in_x = pattern->NewNode(matmul_v2_in_x_repr())
                            ->AsInput()
                            ->assert_is_op_input("matmul_v2", "X");
  auto matmul_v2_in_y = pattern->NewNode(matmul_v2_in_y_repr())
                            ->AsInput()
                            ->assert_is_persistable_var()  // Y is weight
                            ->assert_is_op_input("matmul_v2", "Y");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_in_x = pattern->NewNode(scale_in_x_repr())
                        ->assert_is_op_output("matmul_v2", "Out")
                        ->assert_is_op_input("scale", "X");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  matmul_v2_op->LinksFrom({matmul_v2_in_x, matmul_v2_in_y})
      .LinksTo({scale_in_x});
  scale_op->LinksFrom({scale_in_x}).LinksTo({scale_out});
  return scale_out;
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
PDNode *patterns::Squeeze2Matmul::operator()() {
  auto squeeze2_in_x = pattern->NewNode(squeeze2_in_x_repr())
                           ->assert_is_op_input("squeeze2", "X")
                           ->AsInput();
  auto squeeze2_op =
      pattern->NewNode(squeeze2_op_repr())->assert_is_op("squeeze2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("squeeze2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  squeeze2_op->LinksFrom({squeeze2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

PDNode *patterns::Reshape2Matmul::operator()() {
  auto reshape2_in_x = pattern->NewNode(reshape2_in_x_repr())
                           ->assert_is_op_input("reshape2", "X")
                           ->AsInput();
  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("reshape2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  reshape2_op->LinksFrom({reshape2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

PDNode *patterns::MatmulWithInputOps::operator()() {
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
  auto prev_op_x = pattern->NewNode(prev_op_x_repr())->assert_is_op();
  auto prev_op_y = pattern->NewNode(prev_op_y_repr())->assert_is_op();

  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "Y");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  prev_op_x->LinksTo({matmul_in_x});
  prev_op_y->LinksTo({matmul_in_y});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
PDNode *patterns::Flatten2Matmul::operator()() {
  auto flatten2_in_x = pattern->NewNode(flatten2_in_x_repr())
                           ->assert_is_op_input("flatten2", "X")
                           ->AsInput();
  auto flatten2_op =
      pattern->NewNode(flatten2_op_repr())->assert_is_op("flatten2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("flatten2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  flatten2_op->LinksFrom({flatten2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

2011 2012 2013
PDNode *patterns::ConvResidual::operator()(bool with_residual_data) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

2014 2015 2016 2017 2018 2019 2020 2021 2022
  if (!with_residual_data) {
    conv_op->assert_more([&](Node *x) {
      auto node_names = x->Op()->InputNames();
      if (!HasInput(x, "ResidualData") ||
          x->Op()->Input("ResidualData").size() == 0)
        return true;
      return false;
    });
  }
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

  auto input_var = pattern->NewNode(conv_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
                        ->AsInput()
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("conv2d", "Output");

  std::vector<PDNode *> links_from{input_var, filter_var};

  if (with_residual_data) {
    auto res_conn_var = pattern->NewNode(conv_residual_data_repr())
                            ->AsInput()
                            ->assert_is_op_input("conv2d", "ResidualData");
    links_from.push_back(res_conn_var);
  }

  conv_op->LinksFrom(links_from).LinksTo({output_var});
  return output_var;
}

PDNode *patterns::Pool::operator()() {
  auto pool_op = pattern->NewNode(pool_op_repr())->assert_is_op("pool2d");

  auto input_var = pattern->NewNode(pool_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("pool2d", "X");

  auto output_var = pattern->NewNode(pool_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("pool2d", "Out");
2059

2060
  pool_op->LinksFrom({input_var}).LinksTo({output_var});
2061 2062 2063
  return output_var;
}

Z
Zuza 已提交
2064 2065 2066 2067 2068 2069 2070 2071
PDNode *patterns::Elementwise::operator()(PDNode *x_var, PDNode *y_var,
                                          const std::string elementwise_type) {
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  x_var->AsInput()->assert_is_op_input(elementwise_type, "X");
  y_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
  auto out_var = pattern->NewNode(elementwise_out_repr())
2072
                     ->AsOutput()
Z
Zuza 已提交
2073
                     ->assert_is_op_output(elementwise_type, "Out");
2074

Z
Zuza 已提交
2075 2076
  elementwise_op->LinksFrom({x_var, y_var});
  elementwise_op->LinksTo({out_var});
2077 2078 2079

  return out_var;
}
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
PDNode *patterns::ResidualElementwise::operator()(
    PDNode *op_var, PDNode *residual_var, const std::string elementwise_type,
    bool as_x) {
  auto elementwise_op =
      pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);

  if (as_x) {
    op_var->AsInput()->assert_is_op_input(elementwise_type, "X");
    residual_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
  } else {
    op_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
    residual_var->AsInput()->assert_is_op_input(elementwise_type, "X");
  }
  auto out_var = pattern->NewNode(elementwise_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output(elementwise_type, "Out");

  elementwise_op->LinksFrom({op_var, residual_var});
  elementwise_op->LinksTo({out_var});

  return out_var;
}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
PDNode *patterns::Concat::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");

  auto output_var = pattern->NewNode(concat_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("concat", "Out");

  concat_op->LinksTo({output_var});
  return output_var;
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
PDNode *patterns::ConcatReLU::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
  auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");

  auto concat_out =
      pattern->NewNode(concat_out_repr())->assert_is_op_output("concat", "Out");

  auto relu_out = pattern->NewNode(relu_out_repr())
                      ->AsOutput()
                      ->assert_is_op_output("relu", "Out");

  concat_op->LinksTo({concat_out});
  relu_op->LinksFrom({concat_out}).LinksTo({relu_out});

  return relu_out;
}

PDNode *patterns::ConvConcatReLU::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
  auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");

  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d", "Output");

  auto concat_out = pattern->NewNode(concat_out_repr())
                        ->assert_is_op_output("concat", "Out")
                        ->assert_is_op_input("relu", "X");

  auto relu_out = pattern->NewNode(relu_out_repr())
                      ->AsOutput()
                      ->assert_is_op_output("relu", "Out");

  conv_op->LinksTo({conv_out});
  concat_op->LinksFrom({conv_out}).LinksTo({concat_out});
  relu_op->LinksFrom({concat_out}).LinksTo({relu_out});

  return relu_out;
}

J
joanna.wozna.intel 已提交
2155 2156 2157 2158 2159 2160 2161 2162
PDNode *patterns::OpRequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      return node->Op()->HasAttr("Scale_out") ? true : false;
                    });
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
2163 2164 2165 2166 2167 2168
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");

J
joanna.wozna.intel 已提交
2169 2170
  any_op->LinksTo({requant_in});
  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
2171 2172 2173
  return requant_out;
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
PDNode *patterns::RequantOp::operator()() {
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      return (node->Op()->HasAttr("Scale_in") ||
                              node->Op()->HasAttr("Scale_x") ||
                              node->Op()->HasAttr("Scale_y"));
                    });

  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
  any_op->LinksFrom({requant_out});
  return any_op;
}

2195 2196 2197 2198
PDNode *patterns::OpDequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
2199 2200
                      return (node->Op()->HasAttr("force_fp32_output") ||
                              node->Op()->HasProtoAttr("force_fp32_output"));
2201 2202 2203
                    });
  auto dequant_in = pattern->NewNode(dequant_in_repr())
                        ->assert_is_op_input("dequantize", "Input");
2204 2205 2206 2207 2208 2209
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");

2210 2211
  any_op->LinksTo({dequant_in});
  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
2212 2213 2214
  return dequant_out;
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
PDNode *patterns::DequantScale::operator()() {
  // Create Operators
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");

  dequant_op->LinksTo({dequant_out});
  scale_op->LinksFrom({dequant_out}).LinksTo({scale_out});

  return scale_out;
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
PDNode *patterns::ScaleQuant::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  scale_op->LinksFrom({scale_in}).LinksTo({quant_in});
  quant_op->LinksFrom({quant_in});

  return quant_op;
}

PDNode *patterns::QuantConv::operator()() {
  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  auto conv_in = pattern->NewNode(conv_in_repr())
                     ->AsInput()
                     ->assert_is_op_input("conv2d", "Input");
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  conv_op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });

  quant_op->LinksFrom({quant_in}).LinksTo({conv_in});
  conv_op->LinksFrom({conv_in});

  return quant_op;
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
PDNode *patterns::ScaleMatmul::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  scale_op->LinksFrom({scale_in}).LinksTo({scale_out});
  matmul_op->LinksFrom({scale_out});
  return matmul_op;
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
PDNode *patterns::PriorBox::operator()() {
  auto prior_box_op =
      pattern->NewNode(prior_box_op_repr())->assert_is_op("prior_box");

  auto input_var = pattern->NewNode(prior_box_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Input");

  auto image_var = pattern->NewNode(prior_box_image_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Image");

  auto boxes_var = pattern->NewNode(prior_box_boxes_repr())
                       ->AsOutput()
                       ->assert_is_op_output("prior_box", "Boxes");

  auto variances_var = pattern->NewNode(prior_box_variances_repr())
                           ->AsOutput()
                           ->assert_is_op_output("prior_box", "Variances");

  prior_box_op->LinksFrom({input_var, image_var})
      .LinksTo({boxes_var, variances_var});
  return boxes_var;
}

H
hjchen2 已提交
2312
std::unordered_set<std::string> conv_act_set({"identity", "relu"});
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2327
                                  ->assert_is_persistable_var()
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });

  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
  act_op->LinksFrom({elementwise_add_out}).LinksTo({act_out});

  return act_out;
}

PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2375
                                  ->assert_is_persistable_var()
2376 2377 2378 2379
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
H
hjchen2 已提交
2380
                                 ->assert_is_op_input("elementwise_add", "Y")
2381 2382 2383 2384 2385
                                 ->AsIntermediate();

  auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
                                  ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
H
hjchen2 已提交
2386
                                    ->assert_is_op_input("elementwise_add", "X")
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
                                    ->AsInput();
  auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
                                   ->assert_is_op_output("elementwise_add")
                                   ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });
  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
H
hjchen2 已提交
2414 2415
  elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1})
      .LinksTo({elementwise_add_out_1});
2416 2417 2418 2419
  act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
  return act_out;
}

N
nhzlx 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
PDNode *patterns::ConvElementwiseadd::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2433
                                  ->assert_is_persistable_var()
N
nhzlx 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});

  return elementwise_add_out;
}

N
nhzlx 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
PDNode *patterns::ConvAffineChannel::operator()(
    paddle::framework::ir::PDNode *conv_input, bool with_eltwise_add) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }

  auto *affine_channel_op =
      pattern->NewNode(affine_channel_repr())->assert_is_op("affine_channel");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d");

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as AffineChannel input
    conv_out_var->assert_is_op_input("affine_channel", "X");
  }

  // AC Scale
  auto *ac_scale_var = pattern->NewNode(ac_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
2494
                           ->assert_has_n_outputs(1)
N
nhzlx 已提交
2495 2496 2497 2498 2499
                           ->assert_is_op_input("affine_channel", "Scale");
  // AC Bias
  auto *ac_bias_var = pattern->NewNode(ac_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
2500
                          ->assert_has_n_outputs(1)
N
nhzlx 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
                          ->assert_is_op_input("affine_channel", "Bias");

  // AC output
  auto *ac_out_var = pattern->NewNode(ac_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("affine_channel");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    affine_channel_op->LinksFrom({eltwise_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  } else {
    affine_channel_op->LinksFrom({conv_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  }
  return ac_out_var;
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
PDNode *patterns::DequantQuantAny::operator()() {
  auto *dequant_in = pattern->NewNode(dequant_in_repr())
                         ->AsInput()
                         ->assert_is_op_input("dequantize", "Input");

  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *quant_op = pattern->NewNode(quant_op_repr())
                       ->assert_is_op("quantize")
                       ->AsIntermediate();

  auto *quant_out = pattern->NewNode(quant_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("quantize");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
  quant_op->LinksFrom({dequant_out}).LinksTo({quant_out});
  next_op->LinksFrom({quant_out});

  return quant_out;
}

PDNode *patterns::DequantAny::operator()() {
  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksTo({dequant_out});
  next_op->LinksFrom({dequant_out});

  return dequant_out;
}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
PDNode *patterns::MultipleQuantize::operator()() {
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  // find nodes that are inputs to quantize operators
  prev_out->assert_more([&](Node *node) {
    int counter = std::count_if(
        node->outputs.begin(), node->outputs.end(), [&](Node const *iter) {
          return iter && iter->IsOp() && iter->Op()->Type() == "quantize";
        });
    return (counter > 1);
  });

  return prev_out;
}

2582 2583
PDNode *patterns::QuantizePlacement::operator()(
    const std::unordered_set<std::string> &quantize_enabled_op_types) {
2584 2585
  auto *op =
      pattern->NewNode(op_repr())->assert_is_ops(quantize_enabled_op_types);
2586 2587 2588
  return op;
}

2589 2590
PDNode *patterns::Bfloat16Placement::operator()(
    const std::unordered_set<std::string> &bfloat16_enabled_op_types) {
J
Jacek Czaja 已提交
2591
  std::unordered_set<std::string> supported_op_types =
J
jakpiase 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
      std::unordered_set<std::string>({"cast",
                                       "clip",
                                       "concat",
                                       "conv2d",
                                       "conv2d_transpose",
                                       "elementwise_add",
                                       "elementwise_mul",
                                       "expand_v2",
                                       "fc",
                                       "fusion_gru",
                                       "fusion_lstm",
                                       "gelu",
                                       "layer_norm",
                                       "matmul",
                                       "matmul_v2",
                                       "pool2d",
                                       "prelu",
                                       "relu",
                                       "reshape2",
                                       "scale",
                                       "sigmoid",
                                       "slice",
                                       "softmax",
                                       "split",
                                       "squeeze",
                                       "squeeze2",
                                       "sum",
                                       "transpose2"});
2620 2621 2622
  if (!bfloat16_enabled_op_types.empty()) {
    supported_op_types = bfloat16_enabled_op_types;
  }
2623
  auto *op_in = pattern->NewNode(op_in_repr())->AsInput();
2624
  auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types);
2625 2626 2627 2628
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<bool>("use_mkldnn") ||
           node->Op()->Type() == "reshape2";
  });
2629
  op->LinksFrom({op_in});
2630 2631 2632 2633 2634 2635
  return op;
}

PDNode *patterns::OrphanedBfloat16::operator()() {
  auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
  prev_op->assert_more([&](Node *node) {
2636 2637 2638 2639
    bool data_type_is_missing = !node->Op()->HasAttr("mkldnn_data_type");
    bool data_type_is_fp32 = node->Op()->GetAttrIfExists<std::string>(
                                 "mkldnn_data_type") == "float32";
    return data_type_is_missing || data_type_is_fp32;
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
  });
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  auto *op_out = pattern->NewNode(op_out_repr())->AsOutput();

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();
  next_op->assert_more([&](Node *node) {
2652 2653 2654 2655
    bool data_type_is_missing = !node->Op()->HasAttr("mkldnn_data_type");
    bool data_type_is_fp32 = node->Op()->GetAttrIfExists<std::string>(
                                 "mkldnn_data_type") == "float32";
    return data_type_is_missing || data_type_is_fp32;
2656 2657 2658 2659 2660 2661 2662 2663
  });

  prev_op->LinksTo({prev_out});
  op->LinksFrom({prev_out}).LinksTo({op_out});
  next_op->LinksFrom({op_out});
  return next_op;
}

W
wenbin 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
PDNode *patterns::UnsupportedBfloat16::operator()() {
  auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
  prev_op->assert_more([&](Node *node) {
    return node->Op()->HasAttr("mkldnn_data_type") == false;
  });
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  prev_op->LinksTo({prev_out});
  op->LinksFrom({prev_out});
  return op;
}

T
Tomasz Socha 已提交
2681 2682
PDNode *patterns::Bloat16Ops::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op();
2683 2684 2685 2686 2687 2688 2689
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  return op;
}

2690
PDNode *patterns::MKLDNNInPlace::operator()() {
2691
  const std::unordered_set<std::string> &supported_op_types = {
2692
      "abs", "gelu", "leaky_relu", "relu", "softmax", "sqrt", "swish", "tanh"};
2693 2694 2695

  auto possible_inplace_op = pattern->NewNode(inplace_to_be_op_repr())
                                 ->assert_is_ops(supported_op_types);
2696 2697

  auto input = pattern->NewNode(inplace_to_be_op_in_repr())
2698
                   ->assert_is_ops_input(supported_op_types)
2699 2700
                   ->AsInput();
  auto output = pattern->NewNode(inplace_to_be_op_out_repr())
2701
                    ->assert_is_ops_output(supported_op_types)
2702
                    ->AsOutput();
2703 2704

  auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();
2705
  auto next_output = pattern->NewNode(next_op_out_repr())->AsOutput();
2706 2707 2708 2709

  // Check if op is MKL-DNN enabled
  possible_inplace_op->assert_op_attr("use_mkldnn", true);

2710
  // linked structure
2711 2712 2713
  possible_inplace_op->LinksTo({output});
  possible_inplace_op->LinksFrom({input});
  next_op->LinksFrom({output});
2714
  next_op->LinksTo({next_output});
2715 2716 2717 2718

  return possible_inplace_op;
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
// a -> transpose_op(1) -> transpose_out_a -> flatten_op(1) -> flatten_out_a
// b -> transpose_op(2) -> transpose_out_b -> flatten_op(2) -> flatten_out_b
// ...
// z -> transpose_op(n) -> transpose_out_z -> flatten_op(n) -> flatten_out_z
// flatten_out_a -> concat_op  flatten_out_b -> concat_op ... flatten_out_z ->
// concat_op
PDNode *patterns::TransposeFlattenConcat::operator()(
    std::vector<PDNode *> conv_in, int times) {
  // The times represents the repeat times of the
  // {trans, trans_out, flatten, flatten_out}
  const int kNumFields = 4;
  const int kTransOutOffset = 1;
  const int kFlattenOffset = 2;
  const int kFlattenOutOffset = 3;

  std::vector<PDNode *> nodes;

  for (int i = 0; i < times; i++) {
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose" + std::to_string(i)))
            ->assert_is_op("transpose2"));
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose_out" + std::to_string(i)))
            ->assert_is_op_output("transpose2")
            ->assert_is_op_input("flatten2", "X")
            ->AsIntermediate());
    nodes.push_back(pattern->NewNode(GetNodeName("flatten" + std::to_string(i)))
                        ->assert_is_op("flatten2"));

    nodes.push_back(
        pattern->NewNode(GetNodeName("flatten_out" + std::to_string(i)))
            ->assert_is_op_output("flatten2")
            ->assert_is_op_nth_input("concat", "X", i)
            ->AsIntermediate());
  }

  auto concat_op = pattern->NewNode(GetNodeName("concat"))
                       ->assert_is_op("concat")
                       ->assert_op_has_n_inputs("concat", times);
  auto concat_out = pattern->NewNode(GetNodeName("concat_out"))
                        ->assert_is_op_output("concat")
                        ->AsOutput();

  std::vector<PDNode *> flatten_outs;
  for (int i = 0; i < times; i++) {
    conv_in[i]->AsInput();
    // trans
    nodes[i * kNumFields]->LinksFrom({conv_in[i]});
    // trans_out
    nodes[i * kNumFields + kTransOutOffset]->LinksFrom({nodes[i * kNumFields]});
    // flatten
    nodes[i * kNumFields + kFlattenOffset]->LinksFrom(
        {nodes[i * kNumFields + kTransOutOffset]});
    // flatten_out
    nodes[i * kNumFields + kFlattenOutOffset]->LinksFrom(
        {nodes[i * kNumFields + kFlattenOffset]});
    flatten_outs.push_back(nodes[i * kNumFields + kFlattenOutOffset]);
  }

  concat_op->LinksFrom(flatten_outs).LinksTo({concat_out});
  return concat_out;
}

D
denglin-github 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
void patterns::DeleteDropoutOpPattern::operator()() {
  auto any_op_out = pattern->NewNode(any_op_out_repr())
                        ->assert_is_op_input("dropout", "X")
                        ->AsInput();

  auto dropout_op =
      pattern->NewNode(dropout_op_repr())->assert_is_op("dropout");

  auto dropout_op_out = pattern->NewNode(dropout_op_out_repr())
                            ->assert_is_op_output("dropout", "Out")
                            ->AsIntermediate();

  auto dropout_op_outmask = pattern->NewNode(dropout_op_outmask_repr())
                                ->assert_is_op_output("dropout", "Mask")
                                ->AsOutput();
  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  dropout_op->LinksFrom({any_op_out});
  dropout_op_out->LinksFrom({dropout_op});
  dropout_op_outmask->LinksFrom({dropout_op});
  any_op2->LinksFrom({dropout_op_out});
}

2805 2806 2807
void patterns::DeleteQuantOpFuse::operator()(PDNode *input_act_node,
                                             const std::string &quant_type) {
  auto *input_scale_node = pattern->NewNode(GetNodeName("input_scale_node"))
2808 2809
                               ->assert_is_op_input(quant_type, "InScale")
                               ->AsInput();
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
  auto *quant_node =
      pattern->NewNode(GetNodeName("quant_node"))->assert_is_op(quant_type);
  auto *output_scale_node = pattern->NewNode(GetNodeName("output_scale_node"))
                                ->assert_is_op_output(quant_type, "OutScale")
                                ->AsOutput();
  auto *output_act_node = pattern->NewNode(GetNodeName("output_act_node"))
                              ->assert_is_op_output(quant_type, "Out")
                              ->AsOutput();
  quant_node->LinksFrom({input_scale_node, input_act_node});
  output_scale_node->LinksFrom({quant_node});
  output_act_node->LinksFrom({quant_node});
}

void patterns::DequantOpFuse::operator()(PDNode *quantized_op_input,
                                         const std::string &quantized_op_type,
                                         const std::string &dequant_type,
                                         const std::string &weight_name) {
  auto *quantized_op_weight =
      pattern->NewNode(GetNodeName("quantized_op_weight"))
          ->assert_is_op_input(quantized_op_type, weight_name)
          ->AsInput();
  auto *quantized_op = pattern->NewNode(GetNodeName("quantized_op"))
                           ->assert_is_op(quantized_op_type);
  auto *quantized_op_out = pattern->NewNode(GetNodeName("quantized_op_out"))
                               ->assert_is_op_output(quantized_op_type)
                               ->assert_is_op_input(dequant_type, "X");
  auto *dequant_op =
      pattern->NewNode(GetNodeName("dequant_op"))->assert_is_op(dequant_type);
  auto *dequant_op_out = pattern->NewNode(GetNodeName("dequant_op_out"))
                             ->assert_is_op_output(dequant_type, "Out")
                             ->AsOutput();
  PDNode *dequant_channel_scale = nullptr;
2842
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
2843 2844 2845 2846
    dequant_channel_scale =
        pattern->NewNode(GetNodeName("dequant_channel_scale"))
            ->assert_is_op_nth_input(dequant_type, "Scales", 0)
            ->AsInput();
N
nhzlx 已提交
2847
  }
2848 2849
  quantized_op->LinksFrom({quantized_op_input, quantized_op_weight});
  quantized_op_out->LinksFrom({quantized_op});
N
nhzlx 已提交
2850

2851 2852 2853 2854
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
    dequant_op->LinksFrom({quantized_op_out, dequant_channel_scale});
  } else {
    dequant_op->LinksFrom({quantized_op_out});
N
nhzlx 已提交
2855
  }
2856
  dequant_op_out->LinksFrom({dequant_op});
N
nhzlx 已提交
2857 2858
}

2859 2860 2861
void patterns::ShuffleChannelPattern::operator()(PDNode *reshape1_in) {
  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2");
2862
  reshape1_op->assert_more([&](Node *x) {
2863 2864
    return BOOST_GET_CONST(std::vector<int>, x->Op()->GetAttr("shape"))
               .size() == 5;
2865
  });
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893

  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->assert_is_op_input("transpose2")
                          ->AsIntermediate();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2")
                           ->AsIntermediate();

  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  reshape1_op->LinksFrom({reshape1_in});
  reshape1_out->LinksFrom({reshape1_op});
  transpose_op->LinksFrom({reshape1_out});
  transpose_out->LinksFrom({transpose_op});
  reshape2_op->LinksFrom({transpose_out});
  reshape2_out->LinksFrom({reshape2_op});
}

2894 2895
void patterns::DeleteQuantDequantOpPattern::operator()(
    PDNode *input_node, const std::string &quantdequant_types) {
2896 2897
  auto quant_dequant_op_inscale =
      pattern->NewNode(quant_dequant_op_inscale_repr())
2898
          ->assert_is_op_input(quantdequant_types, "InScale")
2899
          ->AsInput();
2900 2901
  auto quant_dequant_op = pattern->NewNode(quant_dequant_op_repr())
                              ->assert_is_op(quantdequant_types);
2902

2903
  auto quant_dequant_op_out =
2904
      pattern->NewNode(quant_dequant_op_out_repr())
2905 2906
          ->assert_is_op_output(quantdequant_types, "Out")
          ->AsOutput();
2907 2908 2909

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
2910
          ->assert_is_op_output(quantdequant_types, "OutScale")
2911 2912
          ->AsOutput();

2913
  quant_dequant_op->LinksFrom({quant_dequant_op_inscale, input_node});
2914
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
2915
  quant_dequant_op_out->LinksFrom({quant_dequant_op});
2916 2917
}

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
void patterns::DeleteQuantDequantFilterOpPattern::operator()() {
  auto quant_dequant_op_x =
      pattern->NewNode(quant_dequant_op_x_repr())
          ->assert_is_ops_input(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "X")
          ->AsInput();

  auto quant_dequant_op =
      pattern->NewNode(quant_dequant_op_repr())
          ->assert_is_ops({"fake_channel_wise_quantize_dequantize_abs_max",
                           "fake_quantize_dequantize_abs_max"});

  auto quant_dequant_out =
      pattern->NewNode(quant_dequant_op_out_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "Out")
          ->AsIntermediate();

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "OutScale")
          ->AsOutput();
  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  quant_dequant_op->LinksFrom({quant_dequant_op_x});
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
  quant_dequant_out->LinksFrom({quant_dequant_op});
  any_op2->LinksFrom({quant_dequant_out});
}

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
void patterns::DeleteWeightQuantDequantLinearOpPattern::operator()() {
  auto weight_dequantize_linear_op_x =
      pattern->NewNode(weight_dequantize_linear_op_x_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op_scale =
      pattern->NewNode(weight_dequantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("dequantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto weight_dequantize_linear_op =
      pattern->NewNode(weight_dequantize_linear_op_repr())
          ->assert_is_op("dequantize_linear");

  auto weight_dequantize_linear_op_out =
      pattern->NewNode(weight_dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  weight_dequantize_linear_op
      ->LinksFrom(
          {weight_dequantize_linear_op_x, weight_dequantize_linear_op_scale})
      .LinksTo({weight_dequantize_linear_op_out});
  any_op2->LinksFrom({weight_dequantize_linear_op_out});
}

void patterns::DeleteQuantDequantLinearOpPattern::operator()() {
  auto quantize_linear_op_x = pattern->NewNode(quantize_linear_op_x_repr())
                                  ->AsInput()
                                  ->assert_is_op_input("quantize_linear", "X");

  auto quantize_linear_op_scale =
      pattern->NewNode(quantize_linear_op_scale_repr())
          ->AsInput()
          ->assert_is_op_input("quantize_linear", "Scale")
          ->assert_is_persistable_var();

  auto quantize_linear_op = pattern->NewNode(quantize_linear_op_repr())
                                ->assert_is_op("quantize_linear");

  auto quantize_linear_op_out =
      pattern->NewNode(quantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("quantize_linear", "Y")
          ->assert_is_op_input("dequantize_linear", "X")
          ->assert_var_not_persistable();

  // Can not add this node. Todo: Wangzheee
  /*
    auto dequantize_linear_op_scale =
        pattern->NewNode(dequantize_linear_op_scale_repr())
            ->assert_is_op_input("dequantize_linear", "Scale")
            ->AsIntermediate();
  */

  auto dequantize_linear_op = pattern->NewNode(dequantize_linear_op_repr())
                                  ->assert_is_op("dequantize_linear");

  auto dequantize_linear_op_out =
      pattern->NewNode(dequantize_linear_op_out_repr())
          ->AsIntermediate()
          ->assert_is_op_output("dequantize_linear", "Y");

  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  quantize_linear_op
      ->LinksFrom({quantize_linear_op_x, quantize_linear_op_scale})
      .LinksTo({quantize_linear_op_out});
  dequantize_linear_op->LinksFrom({quantize_linear_op_out})
      .LinksTo({dequantize_linear_op_out});
  any_op2->LinksFrom({dequantize_linear_op_out});
}

3033
PDNode *patterns::ReshapeTransposeMatmulPattern::operator()(
3034 3035
    const std::string &op_name, bool with_reshape_xshape,
    bool with_transpose_xshape) {
3036 3037 3038 3039
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
3040
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op(op_name);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060

  auto reshape_in = pattern->NewNode(reshape_in_repr())
                        ->AsInput()
                        ->assert_is_op_input("reshape2", "X");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsIntermediate()
                         ->assert_is_op_input("transpose2", "X")
                         ->assert_is_op_output("reshape2", "Out");
  if (!with_reshape_xshape)
    reshape_out->assert_is_only_output_of_op("reshape2");

  auto reshape_xshape = with_reshape_xshape
                            ? pattern->NewNode(reshape_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("reshape2", "XShape")
                            : nullptr;

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
3061
                           ->assert_is_op_input(op_name)
3062 3063 3064 3065 3066
                           ->assert_is_op_output("transpose2", "Out");
  if (!with_transpose_xshape)
    transpose_out->assert_is_only_output_of_op("transpose2");

  auto transpose_xshape =
3067 3068 3069 3070
      with_transpose_xshape ? pattern->NewNode(transpose_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("transpose2", "XShape")
                            : nullptr;
3071 3072 3073

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
3074
                        ->assert_is_op_output(op_name, "Out");
3075 3076 3077 3078 3079 3080 3081 3082 3083

  reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
  if (with_reshape_xshape) reshape_op->LinksTo({reshape_xshape});
  transpose_op->LinksFrom({reshape_out}).LinksTo({transpose_out});
  if (with_transpose_xshape) transpose_op->LinksTo({transpose_xshape});
  matmul_op->LinksFrom({transpose_out}).LinksTo({matmul_out});
  return matmul_out;
}

3084 3085 3086
// shared function for matmul and matmul_v2
PDNode *patterns::MatmulTransposeReshapePattern::operator()(
    const std::string &op_name) {
3087 3088 3089 3090
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
3091
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op(op_name);
3092 3093 3094

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsInput()
3095
                        ->assert_is_op_output(op_name, "Out")
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
                        ->assert_is_op_input("transpose2", "X");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2", "X");

  auto transpose_out_xshape = pattern->NewNode(transpose_out_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("transpose2", "XShape");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("reshape2");

  auto reshape_out_xshape = pattern->NewNode(reshape_out_xshape_repr())
                                ->AsIntermediate()
                                ->assert_is_op_output("reshape2", "XShape");

  matmul_op->LinksTo({matmul_out});
  transpose_op->LinksTo({transpose_out_xshape});
  reshape_op->LinksTo({reshape_out_xshape});
  transpose_op->LinksFrom({matmul_out}).LinksTo({transpose_out});
  reshape_op->LinksFrom({transpose_out}).LinksTo({reshape_out});
  return reshape_out;
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
PDNode *patterns::FusionGru::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_gru");
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto weight_h = pattern->NewNode(weight_h_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightH");
  auto weight_x = pattern->NewNode(weight_x_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightX");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("fusion_gru", "Hidden");
  op->LinksFrom({x, weight_h, weight_x}).LinksTo({out});
  return out;
}

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
PDNode *patterns::FusionLSTM::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_lstm");
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_lstm", "X");
  auto weight_h = pattern->NewNode(weight_h_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_lstm", "WeightH");
  auto weight_x = pattern->NewNode(weight_x_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_lstm", "WeightX");
  auto hidden = pattern->NewNode(hidden_repr())
                    ->AsOutput()
                    ->assert_is_op_output("fusion_lstm", "Hidden");
  auto cell = pattern->NewNode(cell_repr())
                  ->AsOutput()
                  ->assert_is_op_output("fusion_lstm", "Cell");
  op->LinksFrom({x, weight_h, weight_x}).LinksTo({hidden, cell});
  return hidden;
}

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
PDNode *patterns::TwoFusionGruConcat::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto gru1 =
      pattern->NewNode(gru1_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == false;
          });
  auto gru2 =
      pattern->NewNode(gru2_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == true;
          });
  auto wh1 = pattern->NewNode(wh1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wh2 = pattern->NewNode(wh2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wx1 = pattern->NewNode(wx1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto wx2 = pattern->NewNode(wx2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto b1 = pattern->NewNode(b1_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto b2 = pattern->NewNode(b2_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto h2 = pattern->NewNode(h2_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto concat = pattern->NewNode(concat_repr())->assert_is_op("concat");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("concat", "Out");
  gru1->LinksFrom({x, wh1, wx1, b1}).LinksTo({h1});
  gru2->LinksFrom({x, wh2, wx2, b2}).LinksTo({h2});
  concat->LinksFrom({h1, h2}).LinksTo({out});
  return out;
}

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
PDNode *patterns::MultiGruSeq::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru1 = pattern->NewNode(gru1_repr())->assert_is_op("multi_gru");
  auto wx11 = pattern->NewNode(wx11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx12 = pattern->NewNode(wx12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh11 = pattern->NewNode(wh11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh12 = pattern->NewNode(wh12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b11 = pattern->NewNode(b11_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b12 = pattern->NewNode(b12_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("multi_gru", "Hidden")
                ->assert_is_op_input("multi_gru", "X")
                ->AsIntermediate();
  auto gru2 = pattern->NewNode(gru2_repr())->assert_is_op("multi_gru");
  auto wx21 = pattern->NewNode(wx21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx22 = pattern->NewNode(wx22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh21 = pattern->NewNode(wh21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh22 = pattern->NewNode(wh22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b21 = pattern->NewNode(b21_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b22 = pattern->NewNode(b22_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h2 = pattern->NewNode(h2_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru1->LinksFrom({x, wx11, wx12, wh11, wh12, b11, b12}).LinksTo({h1});
  gru2->LinksFrom({h1, wx21, wx22, wh21, wh22, b21, b22}).LinksTo({h2});
  return h2;
}

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
PDNode *patterns::MultiGru::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru = pattern->NewNode(gru_repr())->assert_is_op("multi_gru");
  auto wx = pattern->NewNode(wx_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightX", 0);
  auto wh = pattern->NewNode(wh_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightH", 0);
  auto h = pattern->NewNode(h_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru->LinksFrom({x, wx, wh}).LinksTo({h});
  return h;
}

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
PDNode *patterns::LayerNorm::operator()() {
  auto *x = pattern->NewNode(x_repr())->AsInput()->assert_is_ops_input(
      {"reduce_mean", "elementwise_sub"});
  auto *x_mean = pattern->NewNode(x_mean_repr())->assert_is_op("reduce_mean");
  auto *x_mean_out = pattern->NewNode(x_mean_out_repr())
                         ->assert_is_op_output("reduce_mean", "Out")
                         ->assert_is_op_input("elementwise_sub", "Y")
                         ->AsIntermediate();
  auto *x_sub_mean =
      pattern->NewNode(x_sub_mean_repr())->assert_is_op("elementwise_sub");
  auto *x_sub_mean_out =
      pattern->NewNode(x_sub_mean_out_repr())
          ->assert_is_op_output("elementwise_sub")
          ->assert_is_ops_input({"elementwise_pow", "elementwise_div"}, "X")
          ->AsIntermediate();
  auto *sqr_pow = pattern->NewNode(sqr_pow_repr())
                      ->assert_is_op_input("elementwise_pow", "Y")
                      ->assert_is_persistable_var()
                      ->AsInput();
  auto *x_sub_mean_sqr =
      pattern->NewNode(x_sub_mean_sqr_repr())->assert_is_op("elementwise_pow");
  auto *x_sub_mean_sqr_out = pattern->NewNode(x_sub_mean_sqr_out_repr())
                                 ->assert_is_op_output("elementwise_pow")
                                 ->assert_is_op_input("reduce_mean")
                                 ->AsIntermediate();
  auto *std_dev = pattern->NewNode(std_dev_repr())->assert_is_op("reduce_mean");
  auto *std_dev_out = pattern->NewNode(std_dev_out_repr())
                          ->assert_is_op_output("reduce_mean")
                          ->assert_is_op_input("elementwise_add")
                          ->AsIntermediate();
  auto *eps = pattern->NewNode(eps_repr())
                  ->assert_is_op_input("elementwise_add", "Y")
                  ->assert_is_persistable_var()
                  ->AsInput();
  auto *std_dev_eps =
      pattern->NewNode(std_dev_eps_repr())->assert_is_op("elementwise_add");
  auto *std_dev_eps_out = pattern->NewNode(std_dev_eps_out_repr())
                              ->assert_is_op_output("elementwise_add")
                              ->assert_is_op_input("sqrt")
                              ->AsIntermediate();
  auto *std_dev_eps_sqrt =
      pattern->NewNode(std_dev_eps_sqrt_repr())->assert_is_op("sqrt");
  auto *std_dev_eps_sqrt_out = pattern->NewNode(std_dev_eps_sqrt_out_repr())
                                   ->assert_is_op_output("sqrt")
                                   ->assert_is_op_input("elementwise_div", "Y")
                                   ->AsIntermediate();
  auto *division =
      pattern->NewNode(division_repr())->assert_is_op("elementwise_div");
  auto *division_out = pattern->NewNode(division_out_repr())
                           ->assert_is_op_output("elementwise_div")
                           ->assert_is_op_input("elementwise_mul")
                           ->AsIntermediate();
  auto *gamma = pattern->NewNode(gamma_repr())
                    ->assert_is_op_input("elementwise_mul", "Y")
                    ->assert_is_persistable_var()
                    ->AsInput();
  auto *scale = pattern->NewNode(scale_repr())->assert_is_op("elementwise_mul");
  auto *scale_out = pattern->NewNode(scale_out_repr())
                        ->assert_is_op_output("elementwise_mul")
                        ->assert_is_op_input("elementwise_add")
                        ->AsIntermediate();
  auto *beta = pattern->NewNode(beta_repr())
                   ->assert_is_op_input("elementwise_add", "Y")
                   ->assert_is_persistable_var()
                   ->AsInput();
  auto *shift = pattern->NewNode(shift_repr())->assert_is_op("elementwise_add");
  auto *shift_out = pattern->NewNode(shift_out_repr())
                        ->assert_is_op_output("elementwise_add")
                        ->AsOutput();

  /*
   *            X
   *           / \
   *          /   reduce_mean "u(x)"
   *          \   /
   *      elementwise_sub     "x - u(x)"
   *      /           \    2
   *      |            \  /
   *      |      elementwise_pow  "(x - u(x))^2"
   *      |             |
   *      |       reduce_mean     "sigma^2 = 1/C*Sum{(x - u(x))^2}"
   *      |             |     eps
   *      |             |     /
   *      |       elementwise_add "sigma^2 + epsilon"
   *      \             |
   *       \           sqrt       "sqrt(sigma^2 + epsilon)"
   *        \          /
   *         \        /
   *       elementwise_div        "lnorm = {x-u(x)}/{sqrt(sigma^2 + epsilon)}"
   *              |
   *       gamma  |
   *          \   |
   *       elementwise_mul        "scale: gamma(C) * lnorm"
   *              |
   *        beta  |
   *          \   |
   *       elementwise_add        "shift: gamma(C) * lnorm + beta(C)"
   */

  x_mean->LinksFrom({x}).LinksTo({x_mean_out});
  x_sub_mean->LinksFrom({x, x_mean_out}).LinksTo({x_sub_mean_out});
  x_sub_mean_sqr->LinksFrom({x_sub_mean_out, sqr_pow})
      .LinksTo({x_sub_mean_sqr_out});
  std_dev->LinksFrom({x_sub_mean_sqr_out}).LinksTo({std_dev_out});
  std_dev_eps->LinksFrom({std_dev_out, eps}).LinksTo({std_dev_eps_out});

  std_dev_eps_sqrt->LinksFrom({std_dev_eps_out})
      .LinksTo({std_dev_eps_sqrt_out});
  division->LinksFrom({x_sub_mean_out, std_dev_eps_sqrt_out})
      .LinksTo({division_out});
  scale->LinksFrom({division_out, gamma}).LinksTo({scale_out});
  shift->LinksFrom({scale_out, beta}).LinksTo({shift_out});

  return shift_out;
}

3394
// Add support int8 flag and out_threshold
3395
PDNode *patterns::AddSupportInt8::operator()() {
3396
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op();
3397
  auto quant_out =
3398 3399 3400 3401
      pattern->NewNode(quant_out_repr())
          ->assert_is_var()
          ->assert_more([&](Node *node) { return node->outputs.size() > 0; })
          ->AsOutput();
3402 3403 3404 3405
  quant_op->LinksTo({quant_out});
  return quant_out;
}

3406 3407 3408
}  // namespace ir
}  // namespace framework
}  // namespace paddle