pybind.cc 7.7 KB
Newer Older
D
dongzhihong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <Python.h>
#include <fstream>
#include <vector>

#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/place.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

namespace py = pybind11;
namespace pd = paddle::framework;

USE_OP(add_two);
USE_OP(onehot_cross_entropy);
USE_OP_WITHOUT_KERNEL(fc);
USE_OP(sgd);
USE_OP(mul);
USE_OP(mean);
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
USE_OP_WITHOUT_KERNEL(recurrent_op);

template <typename ClassType>
void ExposeOperator(ClassType& m) {
  m.def("infer_shape", &ClassType::type::InferShape)
      .def("run", &ClassType::type::Run)
      .def("outputs",
           [](const typename ClassType::type& op) -> std::vector<std::string> {
             return op.outputs_;
           })
      .def("__str__", &ClassType::type::DebugString);
}

static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");

  py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer([](pd::Tensor& self) -> py::buffer_info {
        return paddle::pybind::CastToPyBuffer(self);
      })
      .def("get_dims",
           [](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
      .def("set_dims",
           [](pd::Tensor& self, const std::vector<int>& dim) {
             self.Resize(pd::make_ddim(dim));
           })
      .def("alloc_float",
           [](pd::Tensor& self, paddle::platform::GPUPlace& place) {
             self.mutable_data<float>(place);
           })
      .def("alloc_float",
           [](pd::Tensor& self, paddle::platform::CPUPlace& place) {
             self.mutable_data<float>(place);
           })
      .def("alloc_int",
           [](pd::Tensor& self, paddle::platform::CPUPlace& place) {
             self.mutable_data<int>(place);
           })
      .def("alloc_int",
           [](pd::Tensor& self, paddle::platform::GPUPlace& place) {
             self.mutable_data<int>(place);
           })
      .def("set", paddle::pybind::PyCPUTensorSetFromArray<float>)
      .def("set", paddle::pybind::PyCPUTensorSetFromArray<int>)
#ifndef PADDLE_ONLY_CPU
      .def("set", paddle::pybind::PyCUDATensorSetFromArray<float>)
      .def("set", paddle::pybind::PyCUDATensorSetFromArray<int>)
#endif
      .def("shape",
           [](pd::Tensor& self) { return pd::vectorize(self.dims()); });

  py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.

All parameter, weight, gradient are variables in Paddle.
)DOC")
      .def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); })
      .def("set_int",
           [](pd::Variable& var, int val) -> void {
             *var.GetMutable<int>() = val;
           })
      .def("get_int",
           [](const pd::Variable& var) -> int { return var.Get<int>(); })
      .def("get_tensor",
           [](pd::Variable& self) -> pd::Tensor* {
             return self.GetMutable<pd::Tensor>();
           },
           py::return_value_policy::reference)
      .def("get_net",
           [](pd::Variable& self) -> pd::NetOp* {
             return self.GetMutable<pd::NetOp>();
           },
           py::return_value_policy::reference);

  py::class_<pd::Scope>(m, "Scope", "")
      .def("new_var",
           [](pd::Scope& self, const std::string& name) -> pd::Variable* {
             return self.NewVar(name);
           },
           py::return_value_policy::reference)
      .def("find_var", &pd::Scope::FindVar, py::return_value_policy::reference)
      .def(py::init<>())
      .def("new_scope",
           [](pd::Scope& self) -> pd::Scope* { return &self.NewScope(); },
           py::return_value_policy::reference)
      .def("drop_kids", &pd::Scope::DropKids);

  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    auto& protos = pd::OpRegistry::protos();
    std::vector<py::bytes> ret_values;
    for (auto it = protos.begin(); it != protos.end(); ++it) {
      PADDLE_ENFORCE(it->second.IsInitialized(),
                     "OpProto must all be initialized");
      std::string str;
      PADDLE_ENFORCE(it->second.SerializeToString(&str),
                     "Serialize OpProto Error. This could be a bug of Paddle.");
      ret_values.push_back(py::bytes(str));
    }
    return ret_values;
  });
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
      .def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
      .def("temp", pd::OperatorBase::TMP_VAR_NAME);
  // clang-format off
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
                      -> paddle::platform::DeviceContext* {
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifdef PADDLE_ONLY_CPU
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
#else
                    return new paddle::platform::CUDADeviceContext(place);
#endif
                  });
  // clang-format on

  py::class_<paddle::platform::GPUPlace>(m, "GPUPlace").def(py::init<int>());

  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace").def(py::init<>());

  py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base(
      m, "Operator");

  operator_base.def_static("create", [](py::bytes protobin) {
    pd::OpDesc desc;
    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                   "Cannot parse user input to OpDesc");
    PADDLE_ENFORCE(desc.IsInitialized(),
                   "User OpDesc is not initialized, reason %s",
                   desc.InitializationErrorString());
    return pd::OpRegistry::CreateOp(desc);
  });
  ExposeOperator(operator_base);

  py::class_<pd::NetOp, std::shared_ptr<pd::NetOp>> net(m, "Net");

  net.def_static("create",
                 []() -> std::shared_ptr<pd::NetOp> {
                   auto retv = std::make_shared<pd::NetOp>();
                   retv->type_ = "plain_net";
                   return retv;
                 })
      .def("add_op", &pd::NetOp::AddOp)
      .def("add_op",
           [](pd::NetOp& self, const std::shared_ptr<pd::NetOp>& net) -> void {
             self.AddOp(std::static_pointer_cast<pd::OperatorBase>(net));
           })
      .def("complete_add_op", &pd::NetOp::CompleteAddOp)
      .def("complete_add_op",
           [](std::shared_ptr<pd::NetOp>& self) { self->CompleteAddOp(); });
  ExposeOperator(net);

  m.def("unique_integer", UniqueIntegerGenerator);

  m.def("is_compile_gpu", IsCompileGPU);

  return m.ptr();
}