common.py 28.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15
import warnings
L
littletomatodonkey 已提交
16 17
import paddle.fluid.core as core
from ...fluid.framework import in_dygraph_mode, core
X
xiaoting 已提交
18
from paddle.fluid.layer_helper import LayerHelper
L
littletomatodonkey 已提交
19
from paddle.fluid.layers.tensor import Variable, fill_constant, zeros, concat
X
xiaoting 已提交
20

21
# TODO: define the common functions to build a neural network  
22 23 24 25 26 27
from ...fluid.layers import dropout  #DEFINE_ALIAS
from ...fluid.layers import label_smooth  #DEFINE_ALIAS
from ...fluid import one_hot  #DEFINE_ALIAS
from ...fluid.layers import pad2d  #DEFINE_ALIAS
from ...fluid.layers import unfold  #DEFINE_ALIAS
from ...fluid.layers import assign  #DEFINE_ALIAS
L
littletomatodonkey 已提交
28 29 30 31 32 33
from ...fluid.layers import squeeze  #DEFINE_ALIAS
from ...fluid.layers import unsqueeze  #DEFINE_ALIAS
from ...fluid.layers import elementwise_mul  #DEFINE_ALIAS
from ...tensor import clamp  #DEFINE_ALIAS
from ...tensor import sum  #DEFINE_ALIAS
from ...tensor import sqrt  #DEFINE_ALIAS
X
xiaoting 已提交
34

35 36 37
#from ...fluid.layers import fc  #DEFINE_ALIAS
from ...fluid.layers import pad_constant_like  #DEFINE_ALIAS

38 39 40 41 42 43 44
__all__ = [
    'dropout',
    #       'embedding',
    #       'fc',
    'label_smooth',
    'one_hot',
    'pad',
45
    'pad_constant_like',
46 47 48 49
    'pad2d',
    'unfold',
    #       'bilinear_tensor_product',
    'assign',
L
littletomatodonkey 已提交
50 51
    'interpolate',
    'cosine_similarity',
52
]
X
xiaoting 已提交
53 54 55


def interpolate(input,
56 57 58 59
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=False,
X
xiaoting 已提交
60
                align_mode=1,
61 62
                data_format='NCHW',
                name=None):
X
xiaoting 已提交
63
    """
H
hong 已提交
64 65
	:alias_main: paddle.nn.functional.interpolate
	:alias: paddle.nn.functional.interpolate,paddle.nn.functional.common.interpolate
S
swtkiwi 已提交
66

X
xiaoting 已提交
67
    This op resizes a batch of images.
68 69
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
70 71 72 73 74
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
    and the resizing only applies on the three dimensions(depth, height and width).
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
    future and only use :attr:`out_shape` instead.
    Supporting resample methods:
75 76 77 78 79 80 81 82 83
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
X
xiaoting 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
    Align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

    Example:

    .. code-block:: text

110
        For scale_factor:
X
xiaoting 已提交
111 112 113 114 115
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

116 117 118 119 120 121 122 123 124 125 126
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        
X
xiaoting 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
140

X
xiaoting 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

182 183 184
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
    
X
xiaoting 已提交
185 186
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
187
    
X
xiaoting 已提交
188 189
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
190
    
X
xiaoting 已提交
191 192
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
193
    
X
xiaoting 已提交
194 195
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
196
    
X
xiaoting 已提交
197
    Parameters:
198
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
199
                          its data format is specified by :attr:`data_format`.
200 201 202 203
        size (list|tuple|Variable|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
X
xiaoting 已提交
204
             If a Tensor Variable, its dimensions size should be a 1.
205 206 207
        scale_factor (float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale_factor` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale_factor`.
X
xiaoting 已提交
208
             Default: None.
209 210
        mode (str): The resample method. It supports 'linear', 'nearest', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
211 212 213
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
214 215 216 217
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
218
        data_format (str, optional): Specify the data format of the input, and the data format of the output
219
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
220 221 222
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
223 224 225
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
226
    Returns:
227
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
228 229 230
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
231 232 233 234 235 236 237 238 239 240 241
        TypeError: size should be a list or tuple or Variable.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
X
xiaoting 已提交
242 243
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
244 245
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.

X
xiaoting 已提交
246 247 248 249 250 251 252 253
    Examples:
        .. code-block:: python

	    #declarative mode
	    import paddle
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])
	    #1
254
	    output = paddle.nn.functional.interpolate(input=input, size=[12,12])
X
xiaoting 已提交
255 256 257 258
	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
259
	    #output = paddle.nn.functional.interpolate(input=input, size=[12,dim1])
X
xiaoting 已提交
260 261 262 263
	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
264
	    #output = paddle.nn.functional.interpolate(input=input, size=shape_tensor)
X
xiaoting 已提交
265 266 267 268
	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
269
	    #output = paddle.nn.functional.interpolate(input=input, scale_factor=scale_tensor)
X
xiaoting 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    input_data = np.random.rand(2,3,6,10).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)

	    print(output_data[0].shape)
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
	    #imperative mode
	    import paddle.fluid.dygraph as dg
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
293
    		output = paddle.nn.functional.interpolate(input=input, size=[12,12])
X
xiaoting 已提交
294 295 296
    		print(output.shape)
		# [2L, 3L, 12L, 12L]
    """
297 298 299 300 301 302 303 304 305 306 307
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
    ]
X
xiaoting 已提交
308 309
    if resample not in resample_methods:
        raise ValueError(
310 311
            "The 'resample' of image_resize can only be 'linaer', 'bilinear', 'trilinear', "
            " 'bicubic' or 'nearest' currently.")
X
xiaoting 已提交
312

313
    if resample in ['LINEAR'] and len(input.shape) != 3:
314
        raise ValueError("'linear' only support 3-D tensor.")
315

X
xiaoting 已提交
316 317
    if resample in ['BILINEAR', 'NEAREST', 'BICUBIC'] and len(input.shape) != 4:
        raise ValueError(
318
            "'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.")
X
xiaoting 已提交
319
    if resample == 'TRILINEAR' and len(input.shape) != 5:
320 321 322 323
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
324 325 326

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
327

X
xiaoting 已提交
328 329 330 331 332 333
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
    dtype = helper.input_dtype()

334
    if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']:
335 336
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
337
            " received but only `NCW` or `NWC` supported for 3-D input.")
338
    elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
339 340 341 342 343 344 345 346 347 348 349
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

350
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
351
        data_layout = 'NCHW'
352
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365
        data_layout = 'NHWC'

    inputs = {"X": input}
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

366 367
    out_shape = size
    scale = scale_factor
X
xiaoting 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    if out_shape is not None:
        if isinstance(out_shape, Variable):
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
            if not (_is_list_or_turple_(out_shape)):
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

404 405 406 407 408 409 410 411 412
            if len(input.shape) == 3:
                if len(out_shape) != 1:
                    raise ValueError(
                        "out_shape length should be 2 for input 3-D tensor")
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = float(scale)
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs)
    return out
L
littletomatodonkey 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688


def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
        pad (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
            of input will be padded. 1. If input dimension is 3, then the pad has the form (pad_left,
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right, 
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form 
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
            
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'
        value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
           the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
                    
    Returns: a Tensor padded according to pad and mode and data type is same as input.
    Return Type: Tensor

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

            Case 1:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

            Case 2:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

            Case 3:
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

    Code Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.nn.functional as F
            
            paddle.disable_static()
            
            # example 1
            x_shape = (1, 1, 3)
            x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
            tensor_x = paddle.to_tensor(x)
            y = F.pad(tensor_x, pad=[2, 3], value=1, mode='constant')
            print(y.numpy())
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
            
            # example 2
            x_shape = (1, 1, 2, 3)
            x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1
            tensor_x = paddle.to_tensor(x)
            y = F.pad(tensor_x, pad=[1, 2, 1, 1], value=1, mode='circular')
            print(y.numpy())
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
    assert mode in ['reflect', 'replicate', 'constant', 'circular'], \
            "mode should be one of constant, reflect, replicate, circular, but got {}.".format(mode)

    data_format = data_format.upper()
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], \
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
        "but got {}".format(data_format)

    x_dim = len(x.shape)

    original_data_format = data_format
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [3, 4]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [2]
                x = unsqueeze(x, axes=unsqueezed_dim)
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [2, 3]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [1]
                x = unsqueeze(x, axes=unsqueezed_dim)
    else:
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
                x = unsqueeze(x, axes=unsqueezed_dim)
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
                x = unsqueeze(x, axes=unsqueezed_dim)
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
                x = unsqueeze(x, axes=unsqueezed_dim)

    if in_dygraph_mode():
        if isinstance(pad, Variable):
            pad = pad.numpy()
        out = core.ops.pad3d(x, "paddings", pad, "mode", mode, "value", value,
                             "data_format", data_format, "name", name)
    else:
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
        else:
            attrs['paddings'] = pad

        helper = LayerHelper('pad3d', **locals())

        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs)

    if len(unsqueezed_dim) != 0:
        out = squeeze(out, axes=unsqueezed_dim)

    return out


def cosine_similarity(x1, x2, dim=1, eps=1e-8):
    """
    Compute cosine similarity between x1 and x2 along dim.

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
        dim (int): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float): Small value to avoid division by zero. Default is 1e-8.
                    
    Returns: a Tensor representing cosine similarity between x1 and x2 along dim.
    Return Type: Tensor

    Examples:
        .. code-block:: text
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
                dim = 1
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
            import paddle
            import paddle.nn as nn
            import numpy as np
            paddle.disable_static()

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)
            result = paddle.nn.functional.cosine_similarity(x1, x2, dim=0)
            print(result.numpy())
            # [0.99806249 0.9817672  0.94987036]
            
    """
    w12 = sum(elementwise_mul(x1, x2), dim=dim)
    w1 = sum(elementwise_mul(x1, x1), dim=dim)
    w2 = sum(elementwise_mul(x2, x2), dim=dim)
    n12 = sqrt(clamp(w1 * w2, min=eps * eps))
    cos_sim = w12 / n12
    return cos_sim