enforce.h 49.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19 20
#ifdef __GNUC__
#include <cxxabi.h>  // for __cxa_demangle
#endif               // __GNUC__

21
#if !defined(_WIN32)
22
#include <dlfcn.h>   // dladdr
23
#include <unistd.h>  // sleep, usleep
24
#else                // _WIN32
25 26 27
#ifndef NOMINMAX
#define NOMINMAX  // msvc max/min macro conflict with std::min/max
#endif
28
#include <windows.h>  // GetModuleFileName, Sleep
29 30
#endif

31 32 33 34 35 36
#ifdef PADDLE_WITH_CUDA
#include <cublas_v2.h>
#include <cudnn.h>
#include <curand.h>
#include <thrust/system/cuda/error.h>
#include <thrust/system_error.h>
37
#include "paddle/fluid/platform/cuda_error.pb.h"
38 39
#endif  // PADDLE_WITH_CUDA

40 41 42 43 44
#ifdef PADDLE_WITH_HIP
#include <hiprand.h>
#include <miopen/miopen.h>
#include <rocblas.h>
#include <thrust/system/hip/error.h>
45
#include <thrust/system_error.h>  // NOLINT
46 47
#endif

48 49 50 51
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#endif  // PADDLE_WITH_ASCEND_CL

52
#include <fstream>
Y
Yu Yang 已提交
53
#include <iomanip>
L
liaogang 已提交
54
#include <memory>
55 56 57
#include <sstream>
#include <stdexcept>
#include <string>
S
sneaxiy 已提交
58 59
#include <type_traits>
#include <utility>
60

chen.zhiyu's avatar
chen.zhiyu 已提交
61 62 63 64
#if !defined(_WIN32) && !defined(PADDLE_WITH_MUSL)
#include <execinfo.h>
#endif

65
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
66
#include "gflags/gflags.h"
67
#include "glog/logging.h"
68
#include "paddle/fluid/platform/errors.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/platform/macros.h"
D
dzhwinter 已提交
70
#include "paddle/fluid/platform/port.h"
71
#include "paddle/fluid/platform/variant.h"
72 73
#include "paddle/fluid/string/printf.h"
#include "paddle/fluid/string/to_string.h"
74

75
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
76 77 78
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/dynload/curand.h"
G
Guo Sheng 已提交
79
#include "paddle/fluid/platform/dynload/cusolver.h"
80
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
L
lilong12 已提交
81
#include <error.h>
Y
Yi Wang 已提交
82
#include "paddle/fluid/platform/dynload/nccl.h"
Y
Yi Wang 已提交
83 84
#endif  // __APPLE__
#endif  // PADDLE_WITH_CUDA
85

86 87 88 89 90 91 92 93 94 95
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/hiprand.h"
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include <error.h>  // NOLINT
#include "paddle/fluid/platform/dynload/rccl.h"
#endif  // __APPLE__
#endif  // PADDLE_WITH_HIP

96 97 98
// Note: these headers for simplify demangle type string
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/imperative/type_defs.h"
99 100 101 102
// Note: this header for simplify HIP and CUDA type string
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/type_defs.h"
#endif
W
wanghuancoder 已提交
103 104 105 106 107 108

namespace paddle {
namespace platform {
class ErrorSummary;
}  // namespace platform
}  // namespace paddle
109

110
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
111 112
DECLARE_int64(gpu_allocator_retry_time);
#endif
113 114
DECLARE_int32(call_stack_level);

115 116 117
namespace paddle {
namespace platform {

118 119
/** HELPER MACROS AND FUNCTIONS **/

Z
Zeng Jinle 已提交
120 121 122 123
#ifndef PADDLE_MAY_THROW
#define PADDLE_MAY_THROW noexcept(false)
#endif

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
// Because most enforce conditions would evaluate to true, we can use
// __builtin_expect to instruct the C++ compiler to generate code that
// always forces branch prediction of true.
// This generates faster binary code. __builtin_expect is since C++11.
// For more details, please check https://stackoverflow.com/a/43870188/724872.
#if !defined(_WIN32)
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
#else
// there is no equivalent intrinsics in msvc.
#define UNLIKELY(condition) (condition)
#endif

#if !defined(_WIN32)
#define LIKELY(condition) __builtin_expect(static_cast<bool>(condition), 1)
#else
// there is no equivalent intrinsics in msvc.
#define LIKELY(condition) (condition)
#endif

143 144 145 146 147 148 149 150 151 152 153 154 155
#if defined _WIN32 && defined PADDLE_ON_INFERENCE && defined PADDLE_NO_PYTHON
#define HANDLE_THE_ERROR try {
#define END_HANDLE_THE_ERROR            \
  }                                     \
  catch (const std::exception& e) {     \
    std::cout << e.what() << std::endl; \
    throw;                              \
  }
#else
#define HANDLE_THE_ERROR
#define END_HANDLE_THE_ERROR
#endif

L
liaogang 已提交
156 157 158 159 160 161 162 163 164 165 166
#ifdef __GNUC__
inline std::string demangle(std::string name) {
  int status = -4;  // some arbitrary value to eliminate the compiler warning
  std::unique_ptr<char, void (*)(void*)> res{
      abi::__cxa_demangle(name.c_str(), NULL, NULL, &status), std::free};
  return (status == 0) ? res.get() : name;
}
#else
inline std::string demangle(std::string name) { return name; }
#endif

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
namespace details {
template <typename T>
inline constexpr bool IsArithmetic() {
  return std::is_arithmetic<T>::value;
}

template <typename T1, typename T2, bool kIsArithmetic /* = true */>
struct TypeConverterImpl {
  using Type1 = typename std::common_type<T1, T2>::type;
  using Type2 = Type1;
};

template <typename T1, typename T2>
struct TypeConverterImpl<T1, T2, false> {
  using Type1 = T1;
  using Type2 = T2;
};

template <typename T1, typename T2>
struct TypeConverter {
 private:
  static constexpr bool kIsArithmetic =
      IsArithmetic<T1>() && IsArithmetic<T2>();

 public:
  using Type1 = typename TypeConverterImpl<T1, T2, kIsArithmetic>::Type1;
  using Type2 = typename TypeConverterImpl<T1, T2, kIsArithmetic>::Type2;
};

template <typename T1, typename T2>
using CommonType1 = typename std::add_lvalue_reference<
    typename std::add_const<typename TypeConverter<T1, T2>::Type1>::type>::type;

template <typename T1, typename T2>
using CommonType2 = typename std::add_lvalue_reference<
    typename std::add_const<typename TypeConverter<T1, T2>::Type2>::type>::type;

// Here, we use SFINAE to check whether T can be converted to std::string
template <typename T>
struct CanToString {
 private:
  using YesType = uint8_t;
  using NoType = uint16_t;

  template <typename U>
  static YesType Check(decltype(std::cout << std::declval<U>())) {
    return 0;
  }

  template <typename U>
  static NoType Check(...) {
    return 0;
  }

 public:
  static constexpr bool kValue =
      std::is_same<YesType, decltype(Check<T>(std::cout))>::value;
};

template <bool kCanToString /* = true */>
struct BinaryCompareMessageConverter {
  template <typename T>
  static std::string Convert(const char* expression, const T& value) {
    return expression + std::string(":") + string::to_string(value);
  }
};

template <>
struct BinaryCompareMessageConverter<false> {
  template <typename T>
  static const char* Convert(const char* expression, const T& value) {
    return expression;
  }
};
}  // namespace details

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
template <typename T>
inline std::string ReplaceComplexTypeStr(std::string str,
                                         const std::string& type_name) {
  auto demangle_type_str = demangle(typeid(T).name());
  size_t start_pos = 0;
  while ((start_pos = str.find(demangle_type_str, start_pos)) !=
         std::string::npos) {
    str.replace(start_pos, demangle_type_str.length(), type_name);
    start_pos += type_name.length();
  }
  return str;
}

#define __REPLACE_COMPLEX_TYPE_STR__(__TYPENAME, __STR)                       \
  do {                                                                        \
    __STR = paddle::platform::ReplaceComplexTypeStr<__TYPENAME>(__STR,        \
                                                                #__TYPENAME); \
  } while (0)

inline std::string SimplifyDemangleStr(std::string str) {
  // the older is important, you have to put complex types in front
  __REPLACE_COMPLEX_TYPE_STR__(paddle::framework::AttributeMap, str);
  __REPLACE_COMPLEX_TYPE_STR__(paddle::framework::Attribute, str);
  __REPLACE_COMPLEX_TYPE_STR__(paddle::imperative::NameVariableWrapperMap, str);
  __REPLACE_COMPLEX_TYPE_STR__(paddle::imperative::NameVarBaseMap, str);
  __REPLACE_COMPLEX_TYPE_STR__(std::string, str);
  return str;
}

272
inline std::string GetCurrentTraceBackString() {
273 274
  std::ostringstream sout;

275 276 277
  sout << "\n\n--------------------------------------\n";
  sout << "C++ Traceback (most recent call last):";
  sout << "\n--------------------------------------\n";
chen.zhiyu's avatar
chen.zhiyu 已提交
278 279 280
#if !defined(_WIN32) && !defined(PADDLE_WITH_MUSL)
  static constexpr int TRACE_STACK_LIMIT = 100;

281 282 283 284
  void* call_stack[TRACE_STACK_LIMIT];
  auto size = backtrace(call_stack, TRACE_STACK_LIMIT);
  auto symbols = backtrace_symbols(call_stack, size);
  Dl_info info;
285
  int idx = 0;
286
  for (int i = size - 1; i >= 0; --i) {
287 288
    if (dladdr(call_stack[i], &info) && info.dli_sname) {
      auto demangled = demangle(info.dli_sname);
289 290 291
      std::string path(info.dli_fname);
      // C++ traceback info are from core.so
      if (path.substr(path.length() - 3).compare(".so") == 0) {
292 293
        sout << string::Sprintf("%-3d %s\n", idx++,
                                SimplifyDemangleStr(demangled));
294
      }
295 296 297 298
    }
  }
  free(symbols);
#else
chen.zhiyu's avatar
chen.zhiyu 已提交
299
  sout << "Not support stack backtrace yet.\n";
300
#endif
301 302 303 304 305 306 307
  return sout.str();
}

template <typename StrType>
inline std::string GetErrorSumaryString(StrType&& what, const char* file,
                                        int line) {
  std::ostringstream sout;
308 309 310 311
  if (FLAGS_call_stack_level > 1) {
    sout << "\n----------------------\nError Message "
            "Summary:\n----------------------\n";
  }
312
  sout << string::Sprintf("%s (at %s:%d)", std::forward<StrType>(what), file,
313 314
                          line)
       << std::endl;
315 316 317
  return sout.str();
}

318 319 320 321 322 323 324 325 326 327 328
template <typename StrType>
inline std::string GetTraceBackString(StrType&& what, const char* file,
                                      int line) {
  if (FLAGS_call_stack_level > 1) {
    // FLAGS_call_stack_level>1 means showing c++ call stack
    return GetCurrentTraceBackString() + GetErrorSumaryString(what, file, line);
  } else {
    return GetErrorSumaryString(what, file, line);
  }
}

329 330 331 332 333 334 335 336 337 338 339
inline std::string SimplifyErrorTypeFormat(const std::string& str) {
  std::ostringstream sout;
  size_t type_end_pos = str.find(":", 0);
  if (type_end_pos == std::string::npos) {
    sout << str;
  } else {
    // Remove "Error:", add "()""
    sout << "(" << str.substr(0, type_end_pos - 5) << ")"
         << str.substr(type_end_pos + 1);
  }
  return sout.str();
340 341
}

342 343
inline bool is_error(bool stat) { return !stat; }

344
// Note: This Macro can only be used within enforce.h
345 346 347 348 349 350
#define __THROW_ERROR_INTERNAL__(__ERROR_SUMMARY)                      \
  do {                                                                 \
    HANDLE_THE_ERROR                                                   \
    throw ::paddle::platform::EnforceNotMet(__ERROR_SUMMARY, __FILE__, \
                                            __LINE__);                 \
    END_HANDLE_THE_ERROR                                               \
351 352
  } while (0)

353 354
/** ENFORCE EXCEPTION AND MACROS **/

355
struct EnforceNotMet : public std::exception {
356
 public:
357
  EnforceNotMet(std::exception_ptr e, const char* file, int line) {
358
    try {
Y
Yu Yang 已提交
359
      std::rethrow_exception(e);
360 361 362 363
    } catch (platform::EnforceNotMet& e) {
      code_ = e.code();
      err_str_ = GetTraceBackString(e.what(), file, line);
      simple_err_str_ = SimplifyErrorTypeFormat(err_str_);
Y
Yu Yang 已提交
364
    } catch (std::exception& e) {
365
      err_str_ = GetTraceBackString(e.what(), file, line);
366
      simple_err_str_ = SimplifyErrorTypeFormat(err_str_);
Y
Yu Yang 已提交
367 368
    }
  }
369

370
  EnforceNotMet(const std::string& str, const char* file, int line)
371 372 373
      : err_str_(GetTraceBackString(str, file, line)) {
    simple_err_str_ = SimplifyErrorTypeFormat(err_str_);
  }
Y
Yu Yang 已提交
374

375 376 377 378 379
  EnforceNotMet(const ErrorSummary& error, const char* file, int line)
      : code_(error.code()),
        err_str_(GetTraceBackString(error.to_string(), file, line)) {
    simple_err_str_ = SimplifyErrorTypeFormat(err_str_);
  }
380

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  const char* what() const noexcept override {
    if (FLAGS_call_stack_level > 1) {
      return err_str_.c_str();
    } else {
      return simple_err_str_.c_str();
    }
  }

  error::Code code() const { return code_; }

  const std::string& error_str() const { return err_str_; }

  const std::string& simple_error_str() const { return simple_err_str_; }

  void set_error_str(std::string str) {
    if (FLAGS_call_stack_level > 1) {
      err_str_ = str;
    } else {
      simple_err_str_ = str;
    }
  }
402

403 404 405 406 407
 private:
  // Used to determine the final type of exception thrown
  error::Code code_ = error::LEGACY;
  // Complete error message
  // e.g. InvalidArgumentError: ***
408
  std::string err_str_;
409 410 411
  // Simple errror message used when no C++ stack and python compile stack
  // e.g. (InvalidArgument) ***
  std::string simple_err_str_;
412 413
};

414 415
#define PADDLE_THROW(...)                                                   \
  do {                                                                      \
416
    HANDLE_THE_ERROR                                                        \
417 418
    throw ::paddle::platform::EnforceNotMet(                                \
        ::paddle::platform::ErrorSummary(__VA_ARGS__), __FILE__, __LINE__); \
419
    END_HANDLE_THE_ERROR                                                    \
420 421
  } while (0)

422 423 424 425
#if defined(__CUDA_ARCH__)
// For cuda, the assertions can affect performance and it is therefore
// recommended to disable them in production code
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#assertion
426 427 428 429 430 431 432
#define PADDLE_ENFORCE(_IS_NOT_ERROR, __FORMAT, ...)                         \
  do {                                                                       \
    if (!(_IS_NOT_ERROR)) {                                                  \
      printf("Error: %s:%d Assertion `%s` failed. " __FORMAT "\n", __FILE__, \
             __LINE__, #_IS_NOT_ERROR, ##__VA_ARGS__);                       \
      asm("trap;");                                                          \
    }                                                                        \
433
  } while (0)
434 435 436 437 438 439 440 441 442
#elif defined(__HIPCC__)
#define PADDLE_ENFORCE(_IS_NOT_ERROR, __FORMAT, ...)                         \
  do {                                                                       \
    if (!(_IS_NOT_ERROR)) {                                                  \
      printf("Error: %s:%d Assertion `%s` failed. " __FORMAT "\n", __FILE__, \
             __LINE__, #_IS_NOT_ERROR, ##__VA_ARGS__);                       \
      abort();                                                               \
    }                                                                        \
  } while (0)
443
#else
444 445 446 447 448 449
#define PADDLE_ENFORCE(COND, ...)                                              \
  do {                                                                         \
    auto __cond__ = (COND);                                                    \
    if (UNLIKELY(::paddle::platform::is_error(__cond__))) {                    \
      __THROW_ERROR_INTERNAL__(::paddle::platform::ErrorSummary(__VA_ARGS__)); \
    }                                                                          \
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
  } while (0)
#endif

/*
 * Some enforce helpers here, usage:
 *    int a = 1;
 *    int b = 2;
 *    PADDLE_ENFORCE_EQ(a, b);
 *
 *    will raise an expression described as follows:
 *    "Expected input a == b, but received a(1) != b(2)."
 *      with detailed stack information.
 *
 *    extra messages is also supported, for example:
 *    PADDLE_ENFORCE(a, b, "some simple enforce failed between %d numbers", 2)
 */
466

467 468 469 470 471 472 473 474 475 476
#define PADDLE_ENFORCE_NOT_NULL(__VAL, ...)                                   \
  do {                                                                        \
    if (UNLIKELY(nullptr == (__VAL))) {                                       \
      auto __summary__ = ::paddle::platform::ErrorSummary(__VA_ARGS__);       \
      auto __message__ = ::paddle::string::Sprintf(                           \
          "%s\n  [Hint: " #__VAL " should not be null.]",                     \
          __summary__.error_message());                                       \
      __THROW_ERROR_INTERNAL__(                                               \
          ::paddle::platform::ErrorSummary(__summary__.code(), __message__)); \
    }                                                                         \
477 478
  } while (0)

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
#define __PADDLE_BINARY_COMPARE(__VAL1, __VAL2, __CMP, __INV_CMP, ...)        \
  do {                                                                        \
    auto __val1 = (__VAL1);                                                   \
    auto __val2 = (__VAL2);                                                   \
    using __TYPE1__ = decltype(__val1);                                       \
    using __TYPE2__ = decltype(__val2);                                       \
    using __COMMON_TYPE1__ =                                                  \
        ::paddle::platform::details::CommonType1<__TYPE1__, __TYPE2__>;       \
    using __COMMON_TYPE2__ =                                                  \
        ::paddle::platform::details::CommonType2<__TYPE1__, __TYPE2__>;       \
    bool __is_not_error = (static_cast<__COMMON_TYPE1__>(__val1))__CMP(       \
        static_cast<__COMMON_TYPE2__>(__val2));                               \
    if (UNLIKELY(!__is_not_error)) {                                          \
      auto __summary__ = ::paddle::platform::ErrorSummary(__VA_ARGS__);       \
      constexpr bool __kCanToString__ =                                       \
          ::paddle::platform::details::CanToString<__TYPE1__>::kValue &&      \
          ::paddle::platform::details::CanToString<__TYPE2__>::kValue;        \
      auto __message__ = ::paddle::string::Sprintf(                           \
          "%s\n  [Hint: Expected %s " #__CMP                                  \
          " %s, but received %s " #__INV_CMP " %s.]",                         \
          __summary__.error_message(), #__VAL1, #__VAL2,                      \
          ::paddle::platform::details::BinaryCompareMessageConverter<         \
              __kCanToString__>::Convert(#__VAL1, __val1),                    \
          ::paddle::platform::details::BinaryCompareMessageConverter<         \
              __kCanToString__>::Convert(#__VAL2, __val2));                   \
      __THROW_ERROR_INTERNAL__(                                               \
          ::paddle::platform::ErrorSummary(__summary__.code(), __message__)); \
    }                                                                         \
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  } while (0)

#define PADDLE_ENFORCE_EQ(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, ==, !=, __VA_ARGS__)
#define PADDLE_ENFORCE_NE(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, !=, ==, __VA_ARGS__)
#define PADDLE_ENFORCE_GT(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, >, <=, __VA_ARGS__)
#define PADDLE_ENFORCE_GE(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, >=, <, __VA_ARGS__)
#define PADDLE_ENFORCE_LT(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <, >=, __VA_ARGS__)
#define PADDLE_ENFORCE_LE(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <=, >, __VA_ARGS__)

522 523
/** EXTENDED TOOL FUNCTIONS WITH CHECKING **/

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * Summary: This macro is used to get Variable or internal type
 *   data (such as LoDTensor or SelectedRows) of the Input and
 *   Output in op, generally used when call scope.FindVar(Input/
 *   Output("Name")) or ctx.Input<LoDTensor>().
 *   Firstly this macro check whether the obtained pointer is null,
 *   and then return data if it is not null.
 *
 * Note: This macro is only suitable for specific scenarios and
 *   does not intended to be widely used. If it cannot meet the
 *   requirements, please use other PADDLE_ENFORCE** check macro.
 *
 * Parameters:
 *     __PTR: pointer
 *     __ROLE: (string), Input or Output
 *     __NAME: (string), Input or Output name
 *     __OP_TYPE: (string), the op type
 *  
 * Return: The data pointed to by the pointer.
 *
 * Examples:
 *    GET_DATA_SAFELY(ctx.Input<LoDTensor>("X"), "Input", "X", "Mul");
546
 */
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
#define GET_DATA_SAFELY(__PTR, __ROLE, __NAME, __OP_TYPE)                     \
  (([&]() -> std::add_lvalue_reference<decltype(*(__PTR))>::type {            \
    auto* __ptr = (__PTR);                                                    \
    if (UNLIKELY(nullptr == __ptr)) {                                         \
      auto __summary__ = paddle::platform::errors::NotFound(                  \
          "Unable to get %s data of %s %s in operator %s. "                   \
          "Possible reasons are:\n"                                           \
          "  1. The %s is not the %s of operator %s;\n"                       \
          "  2. The %s has no corresponding variable passed in;\n"            \
          "  3. The %s corresponding variable is not initialized.",           \
          paddle::platform::demangle(                                         \
              typeid(std::add_lvalue_reference<decltype(*__ptr)>::type)       \
                  .name()),                                                   \
          __ROLE, __NAME, __OP_TYPE, __NAME, __ROLE, __OP_TYPE, __NAME,       \
          __NAME);                                                            \
      auto __message__ = ::paddle::string::Sprintf(                           \
          "%s\n  [Hint: pointer " #__PTR " should not be null.]",             \
          __summary__.error_message());                                       \
      __THROW_ERROR_INTERNAL__(                                               \
          ::paddle::platform::ErrorSummary(__summary__.code(), __message__)); \
    }                                                                         \
    return *__ptr;                                                            \
569 570
  })())

571 572 573 574 575 576 577 578 579 580 581 582 583
/*
 * Summary: This macro is used to check whether op has specified
 * Input or Output Variables. Because op's Input and Output
 * checking are written similarly, so abstract this macro.
 *
 * Parameters:
 *     __EXPR: (bool), the bool expression
 *     __ROLE: (string), Input or Output
 *     __NAME: (string), Input or Output name
 *     __OP_TYPE: (string), the op type
 *
 * Examples:
 *    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Mul");
584
 */
585 586 587 588 589 590 591
#define OP_INOUT_CHECK(__EXPR, __ROLE, __NAME, __OP_TYPE)                   \
  do {                                                                      \
    PADDLE_ENFORCE_EQ(__EXPR, true, paddle::platform::errors::NotFound(     \
                                        "No %s(%s) found for %s operator.", \
                                        __ROLE, __NAME, __OP_TYPE));        \
  } while (0)

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/*
 * Summary: This BOOST_GET(_**) series macros are used to call boost::get
 *   safely. boost::get is not a completely safe api, although it will not
 *   go wrong in most cases, but in extreme cases, it may fail and directly
 *   throw a boost::bad_get exception, without any stack information.
 *   This kind of problems is difficult to debug, so add these macros to
 *   enrich boost::get error information. At the same time, we restrict
 *   the direct use of boost::get by CI rule.
 *
 * Parameters:
 *     __TYPE: the target variable type
 *     __VALUE: the target variable to get
 *
 * Examples:
 *     - unsafe writing: int x = boost::get<int>(y);
 *     - safe writing: int x = BOOST_GET(int, y);
 *
 * Note: GCC 4.8 cannot select right overloaded function here, so need
 *    to define different functions and macros here, after we upgreade
 *    CI gcc version, we can only define one BOOST_GET macro.
612
 */
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
namespace details {

#define DEFINE_SAFE_BOOST_GET(__InputType, __OutputType, __OutputTypePtr,      \
                              __FuncName)                                      \
  template <typename OutputType, typename InputType>                           \
  auto __FuncName(__InputType input, const char* expression, const char* file, \
                  int line)                                                    \
      ->typename std::conditional<std::is_pointer<InputType>::value,           \
                                  __OutputTypePtr, __OutputType>::type {       \
    try {                                                                      \
      return boost::get<OutputType>(input);                                    \
    } catch (boost::bad_get&) {                                                \
      HANDLE_THE_ERROR                                                         \
      throw ::paddle::platform::EnforceNotMet(                                 \
          ::paddle::platform::errors::InvalidArgument(                         \
              "boost::get failed, cannot get value "                           \
              "(%s) by type %s, its type is %s.",                              \
              expression,                                                      \
              paddle::platform::demangle(typeid(OutputType).name()),           \
              paddle::platform::demangle(input.type().name())),                \
          file, line);                                                         \
      END_HANDLE_THE_ERROR                                                     \
    }                                                                          \
  }

DEFINE_SAFE_BOOST_GET(InputType&, OutputType&, OutputType*, SafeBoostGet);
DEFINE_SAFE_BOOST_GET(const InputType&, const OutputType&, const OutputType*,
                      SafeBoostGetConst);
DEFINE_SAFE_BOOST_GET(InputType&&, OutputType, OutputType*,
                      SafeBoostGetMutable);

}  // namespace details

#define BOOST_GET(__TYPE, __VALUE)                                     \
  ::paddle::platform::details::SafeBoostGet<__TYPE>(__VALUE, #__VALUE, \
                                                    __FILE__, __LINE__)
#define BOOST_GET_CONST(__TYPE, __VALUE)                                    \
  ::paddle::platform::details::SafeBoostGetConst<__TYPE>(__VALUE, #__VALUE, \
                                                         __FILE__, __LINE__)
#define BOOST_GET_MUTABLE(__TYPE, __VALUE)                                    \
  ::paddle::platform::details::SafeBoostGetMutable<__TYPE>(__VALUE, #__VALUE, \
                                                           __FILE__, __LINE__)

656 657
/** OTHER EXCEPTION AND ENFORCE **/

658 659
struct EOFException : public std::exception {
  std::string err_str_;
660 661
  EOFException(const char* err_msg, const char* file, int line) {
    err_str_ = string::Sprintf("%s at [%s:%d]", err_msg, file, line);
662 663
  }

664
  const char* what() const noexcept override { return err_str_.c_str(); }
665 666
};

667 668
#define PADDLE_THROW_EOF()                                                     \
  do {                                                                         \
669
    HANDLE_THE_ERROR                                                           \
670 671
    throw ::paddle::platform::EOFException("There is no next data.", __FILE__, \
                                           __LINE__);                          \
672
    END_HANDLE_THE_ERROR                                                       \
673
  } while (0)
674

675 676 677 678 679 680 681
#define PADDLE_THROW_BAD_ALLOC(...)                                          \
  do {                                                                       \
    HANDLE_THE_ERROR                                                         \
    throw ::paddle::memory::allocation::BadAlloc(                            \
        ::paddle::platform::ErrorSummary(__VA_ARGS__).to_string(), __FILE__, \
        __LINE__);                                                           \
    END_HANDLE_THE_ERROR                                                     \
682
  } while (0)
M
minqiyang 已提交
683

684
/** CUDA PADDLE ENFORCE FUNCTIONS AND MACROS **/
685
#ifdef PADDLE_WITH_CUDA
686

687
/***** CUDA ERROR *****/
S
sneaxiy 已提交
688
inline bool is_error(cudaError_t e) { return e != cudaSuccess; }
M
minqiyang 已提交
689

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
inline std::string GetCudaErrorWebsite(int32_t cuda_version) {
  std::ostringstream webstr;
  webstr << "https://docs.nvidia.com/cuda/";
  if (cuda_version != -1) {
    double version = cuda_version / 10;
    webstr << "archive/" << std::fixed << std::setprecision(1) << version;
  }
  webstr << "/cuda-runtime-api/group__CUDART__TYPES.html"
            "#group__CUDART__TYPES_1g3f51e3575c2178246db0a94a430e0038";
  return webstr.str();
}

inline std::string build_nvidia_error_msg(cudaError_t e) {
#if CUDA_VERSION >= 10000 && CUDA_VERSION < 11000
  int32_t cuda_version = 100;
#elif CUDA_VERSION >= 9000
  int32_t cuda_version = 90;
#else
  int32_t cuda_version = -1;
#endif
  std::ostringstream sout;
  sout << " Cuda error(" << e << "), " << cudaGetErrorString(e) << ".";
  static platform::proto::cudaerrorDesc cudaerror;
  static bool _initSucceed = false;
  if (cudaerror.ByteSizeLong() == 0) {
    std::string filePath;
#if !defined(_WIN32)
    Dl_info info;
    if (dladdr(reinterpret_cast<void*>(GetCudaErrorWebsite), &info)) {
      std::string strModule(info.dli_fname);
      const size_t last_slash_idx = strModule.find_last_of("/");
      std::string compare_path = strModule.substr(strModule.length() - 6);
      if (std::string::npos != last_slash_idx) {
        strModule.erase(last_slash_idx, std::string::npos);
      }
      if (compare_path.compare("avx.so") == 0) {
        filePath = strModule +
                   "/../include/third_party/cudaerror/data/cudaErrorMessage.pb";
      } else {
        filePath =
            strModule + "/../../thirl_party/cudaerror/data/cudaErrorMessage.pb";
      }
    }
#else
    char buf[100];
    MEMORY_BASIC_INFORMATION mbi;
    HMODULE h_module =
        (::VirtualQuery(GetCudaErrorWebsite, &mbi, sizeof(mbi)) != 0)
            ? (HMODULE)mbi.AllocationBase
            : NULL;
    GetModuleFileName(h_module, buf, 100);
    std::string strModule(buf);
    const size_t last_slash_idx = strModule.find_last_of("\\");
    std::string compare_path = strModule.substr(strModule.length() - 7);
    if (std::string::npos != last_slash_idx) {
      strModule.erase(last_slash_idx, std::string::npos);
    }
    if (compare_path.compare("avx.pyd") == 0) {
      filePath =
          strModule +
          "\\..\\include\\third_party\\cudaerror\\data\\cudaErrorMessage.pb";
    } else {
      filePath =
          strModule + "\\..\\third_party\\cudaerror\\data\\cudaErrorMessage.pb";
    }
#endif
    std::ifstream fin(filePath, std::ios::in | std::ios::binary);
    _initSucceed = cudaerror.ParseFromIstream(&fin);
  }
  if (_initSucceed) {
    for (int i = 0; i < cudaerror.allmessages_size(); ++i) {
      if (cuda_version == cudaerror.allmessages(i).version()) {
        for (int j = 0; j < cudaerror.allmessages(i).messages_size(); ++j) {
          if (e == cudaerror.allmessages(i).messages(j).errorcode()) {
            sout << "\n  [Advise: "
                 << cudaerror.allmessages(i).messages(j).errormessage() << "]";
            return sout.str();
          }
        }
      }
    }
  }
  sout << "\n  [Advise: Please search for the error code(" << e
       << ") on website( " << GetCudaErrorWebsite(cuda_version)
       << " ) to get Nvidia's official solution about CUDA Error.]";
  return sout.str();
776 777
}

778
/** curand ERROR **/
M
minqiyang 已提交
779 780
inline bool is_error(curandStatus_t stat) {
  return stat != CURAND_STATUS_SUCCESS;
781 782
}

783 784 785
inline const char* curandGetErrorString(curandStatus_t stat) {
  switch (stat) {
    case CURAND_STATUS_SUCCESS:
786
      return "`CURAND_STATUS_SUCCESS`. No errors.";
787
    case CURAND_STATUS_VERSION_MISMATCH:
788 789
      return "`CURAND_STATUS_VERSION_MISMATCH`. Header file and linked library "
             "version do not match.";
790
    case CURAND_STATUS_NOT_INITIALIZED:
791
      return "`CURAND_STATUS_NOT_INITIALIZED`. Generator not initialized.";
792
    case CURAND_STATUS_ALLOCATION_FAILED:
793
      return "`CURAND_STATUS_ALLOCATION_FAILED`. Memory allocation failed.";
794
    case CURAND_STATUS_TYPE_ERROR:
795
      return "`CURAND_STATUS_TYPE_ERROR`. Generator is wrong type.";
796
    case CURAND_STATUS_OUT_OF_RANGE:
797
      return "`CURAND_STATUS_OUT_OF_RANGE`. Argument out of range.";
798
    case CURAND_STATUS_LENGTH_NOT_MULTIPLE:
799 800
      return "`CURAND_STATUS_LENGTH_NOT_MULTIPLE`. Length requested is not a "
             "multple of dimension.";
801
    case CURAND_STATUS_DOUBLE_PRECISION_REQUIRED:
802 803
      return "`CURAND_STATUS_DOUBLE_PRECISION_REQUIRED`. GPU does not have "
             "double precision required by MRG32k3a.";
804
    case CURAND_STATUS_LAUNCH_FAILURE:
805
      return "`CURAND_STATUS_LAUNCH_FAILURE`. Kernel launch failure.";
806
    case CURAND_STATUS_PREEXISTING_FAILURE:
807 808
      return "`CURAND_STATUS_PREEXISTING_FAILURE`. Preexisting failure on "
             "library entry.";
809
    case CURAND_STATUS_INITIALIZATION_FAILED:
810 811
      return "`CURAND_STATUS_INITIALIZATION_FAILED`. Initialization of CUDA "
             "failed.";
812
    case CURAND_STATUS_ARCH_MISMATCH:
813 814
      return "`CURAND_STATUS_ARCH_MISMATCH`. Architecture mismatch, GPU does "
             "not support requested feature.";
815
    case CURAND_STATUS_INTERNAL_ERROR:
816
      return "`CURAND_STATUS_INTERNAL_ERROR`. Internal library error.";
817 818 819 820 821 822 823 824
    default:
      return "Unknown curand status";
  }
}

inline std::string build_nvidia_error_msg(curandStatus_t stat) {
  std::string msg(" Curand error, ");
  return msg + curandGetErrorString(stat) + " ";
825 826
}

827
/***** CUDNN ERROR *****/
M
minqiyang 已提交
828 829
inline bool is_error(cudnnStatus_t stat) {
  return stat != CUDNN_STATUS_SUCCESS;
830 831
}

832 833 834
inline std::string build_nvidia_error_msg(cudnnStatus_t stat) {
  std::string msg(" Cudnn error, ");
  return msg + platform::dynload::cudnnGetErrorString(stat) + " ";
835 836
}

837
/***** CUBLAS ERROR *****/
M
minqiyang 已提交
838 839
inline bool is_error(cublasStatus_t stat) {
  return stat != CUBLAS_STATUS_SUCCESS;
840 841
}

842 843 844
inline const char* cublasGetErrorString(cublasStatus_t stat) {
  switch (stat) {
    case CUBLAS_STATUS_NOT_INITIALIZED:
845 846
      return "`CUBLAS_STATUS_NOT_INITIALIZED`. The cuBLAS library was not "
             "initialized.";
847
    case CUBLAS_STATUS_ALLOC_FAILED:
848 849
      return "`CUBLAS_STATUS_ALLOC_FAILED`. Resource allocation failed inside "
             "the cuBLAS library.";
850
    case CUBLAS_STATUS_INVALID_VALUE:
851 852 853
      return "`CUBLAS_STATUS_INVALID_VALUE`. An unsupported value or parameter "
             "was passed to the function (a negative vector size, for "
             "example).";
854
    case CUBLAS_STATUS_ARCH_MISMATCH:
855 856 857
      return "`CUBLAS_STATUS_ARCH_MISMATCH`. The function requires a feature "
             "absent from the device architecture; usually caused by the lack "
             "of support for double precision.";
858
    case CUBLAS_STATUS_MAPPING_ERROR:
859 860
      return "`CUBLAS_STATUS_MAPPING_ERROR`. An access to GPU memory space "
             "failed, which is usually caused by a failure to bind a texture.";
861
    case CUBLAS_STATUS_EXECUTION_FAILED:
862 863 864
      return "`CUBLAS_STATUS_EXECUTION_FAILED`. The GPU program failed to "
             "execute. This is often caused by a launch failure of the kernel "
             "on the GPU, which can be caused by multiple reasons.";
865
    case CUBLAS_STATUS_INTERNAL_ERROR:
866 867 868
      return "`CUBLAS_STATUS_INTERNAL_ERROR`. An internal cuBLAS operation "
             "failed. This error is usually caused by a cudaMemcpyAsync() "
             "failure.";
869
    case CUBLAS_STATUS_NOT_SUPPORTED:
870 871
      return "`CUBLAS_STATUS_NOT_SUPPORTED`. The functionality requested is "
             "not supported.";
872
    case CUBLAS_STATUS_LICENSE_ERROR:
873 874 875
      return "`CUBLAS_STATUS_LICENSE_ERROR`. The functionality requested "
             "requires some license and an error was detected when trying to "
             "check the current licensing.";
876 877
    default:
      return "Unknown cublas status";
878
  }
879 880 881 882 883
}

inline std::string build_nvidia_error_msg(cublasStatus_t stat) {
  std::string msg(" Cublas error, ");
  return msg + cublasGetErrorString(stat) + " ";
884 885
}

G
Guo Sheng 已提交
886 887 888 889 890 891 892 893
/***** CUSOLVER ERROR *****/
inline bool is_error(cusolverStatus_t stat) {
  return stat != CUSOLVER_STATUS_SUCCESS;
}

inline const char* cusolverGetErrorString(cusolverStatus_t stat) {
  switch (stat) {
    case CUSOLVER_STATUS_NOT_INITIALIZED:
894 895 896 897
      return "`CUSOLVER_STATUS_NOT_INITIALIZED`. The cuSolver library was not "
             "initialized. This is usually caused by the lack of a prior call, "
             "an error in the CUDA Runtime API called by the cuSolver routine, "
             "or an error in the hardware setup.";
G
Guo Sheng 已提交
898
    case CUSOLVER_STATUS_ALLOC_FAILED:
899 900 901
      return "`CUSOLVER_STATUS_ALLOC_FAILED`. Resource allocation failed "
             "inside the cuSolver library. This is usually caused by a "
             "cudaMalloc() failure.";
G
Guo Sheng 已提交
902
    case CUSOLVER_STATUS_INVALID_VALUE:
903 904 905
      return "`CUSOLVER_STATUS_INVALID_VALUE`. An unsupported value or "
             "parameter was passed to the function (a negative vector size, "
             "for example).";
G
Guo Sheng 已提交
906
    case CUSOLVER_STATUS_ARCH_MISMATCH:
907 908 909
      return "`CUSOLVER_STATUS_ARCH_MISMATCH`. The function requires a feature "
             "absent from the device architecture; usually caused by the lack "
             "of support for atomic operations or double precision.";
G
Guo Sheng 已提交
910
    case CUSOLVER_STATUS_EXECUTION_FAILED:
911 912 913
      return "`CUSOLVER_STATUS_EXECUTION_FAILED`. The GPU program failed to "
             "execute. This is often caused by a launch failure of the kernel "
             "on the GPU, which can be caused by multiple reasons.";
G
Guo Sheng 已提交
914
    case CUSOLVER_STATUS_INTERNAL_ERROR:
915 916 917
      return "`CUSOLVER_STATUS_INTERNAL_ERROR`. An internal cuSolver operation "
             "failed. This error is usually caused by a cudaMemcpyAsync() "
             "failure.";
G
Guo Sheng 已提交
918
    case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
919 920 921
      return "`CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED`. The matrix type is "
             "not supported by this function. This is usually caused by "
             "passing an invalid matrix descriptor to the function.";
G
Guo Sheng 已提交
922 923 924 925
    default:
      return "Unknown cusolver status";
  }
}
926

G
Guo Sheng 已提交
927 928 929 930 931
inline std::string build_nvidia_error_msg(cusolverStatus_t stat) {
  std::string msg(" Cublas error, ");
  return msg + cusolverGetErrorString(stat) + " ";
}

932
/****** NCCL ERROR ******/
933
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
S
sneaxiy 已提交
934 935 936 937
inline bool is_error(ncclResult_t nccl_result) {
  return nccl_result != ncclSuccess;
}

938 939
inline std::string build_nvidia_error_msg(ncclResult_t nccl_result) {
  std::string msg(" Nccl error, ");
L
lilong12 已提交
940 941 942 943 944 945 946 947 948 949 950 951
  if (errno == ENOSPC || errno == EAGAIN) {
    std::string detail(strerror(errno));
    detail += "\nPlease try one of the following solutions:";
    detail += "\n1. export NCCL_SHM_DISABLE=1;";
    detail += "\n2. export NCCL_P2P_LEVEL=SYS;";
    detail +=
        "\n3. Increase shared memory by setting the -shm-size "
        "option when starting docker container, e.g., setting "
        " -shm-size=2g.\n";
    return msg + platform::dynload::ncclGetErrorString(nccl_result) +
           ", detail: " + detail + " ";
  }
952
  return msg + platform::dynload::ncclGetErrorString(nccl_result) + " ";
953
}
954
#endif  // not(__APPLE__) and PADDLE_WITH_NCCL
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
namespace details {

template <typename T>
struct CudaStatusType {};

#define DEFINE_CUDA_STATUS_TYPE(type, success_value) \
  template <>                                        \
  struct CudaStatusType<type> {                      \
    using Type = type;                               \
    static constexpr Type kSuccess = success_value;  \
  }

DEFINE_CUDA_STATUS_TYPE(cudaError_t, cudaSuccess);
DEFINE_CUDA_STATUS_TYPE(curandStatus_t, CURAND_STATUS_SUCCESS);
DEFINE_CUDA_STATUS_TYPE(cudnnStatus_t, CUDNN_STATUS_SUCCESS);
DEFINE_CUDA_STATUS_TYPE(cublasStatus_t, CUBLAS_STATUS_SUCCESS);
G
Guo Sheng 已提交
972
DEFINE_CUDA_STATUS_TYPE(cusolverStatus_t, CUSOLVER_STATUS_SUCCESS);
973

974
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
975 976 977
DEFINE_CUDA_STATUS_TYPE(ncclResult_t, ncclSuccess);
#endif
}  // namespace details
M
minqiyang 已提交
978

979 980 981 982 983 984 985 986 987 988 989 990
#define PADDLE_ENFORCE_CUDA_SUCCESS(COND)                        \
  do {                                                           \
    auto __cond__ = (COND);                                      \
    using __CUDA_STATUS_TYPE__ = decltype(__cond__);             \
    constexpr auto __success_type__ =                            \
        ::paddle::platform::details::CudaStatusType<             \
            __CUDA_STATUS_TYPE__>::kSuccess;                     \
    if (UNLIKELY(__cond__ != __success_type__)) {                \
      auto __summary__ = ::paddle::platform::errors::External(   \
          ::paddle::platform::build_nvidia_error_msg(__cond__)); \
      __THROW_ERROR_INTERNAL__(__summary__);                     \
    }                                                            \
991 992
  } while (0)

993
inline void retry_sleep(unsigned milliseconds) {
994
#ifdef _WIN32
995
  Sleep(milliseconds);
996
#else
997 998 999 1000 1001 1002 1003 1004 1005
  if (milliseconds < 1000) {
    // usleep argument must be less than 1,000,000. Reference:
    // https://pubs.opengroup.org/onlinepubs/7908799/xsh/usleep.html
    usleep(milliseconds * 1000);
  } else {
    // clip to sleep in seconds because we can not and don't have to
    // sleep for exact milliseconds
    sleep(milliseconds / 1000);
  }
1006 1007 1008
#endif
}

1009 1010 1011 1012 1013 1014 1015 1016 1017
#define PADDLE_RETRY_CUDA_SUCCESS(COND)                                 \
  do {                                                                  \
    auto __cond__ = (COND);                                             \
    int retry_count = 1;                                                \
    using __CUDA_STATUS_TYPE__ = decltype(__cond__);                    \
    constexpr auto __success_type__ =                                   \
        ::paddle::platform::details::CudaStatusType<                    \
            __CUDA_STATUS_TYPE__>::kSuccess;                            \
    while (UNLIKELY(__cond__ != __success_type__) && retry_count < 5) { \
1018
      retry_sleep(FLAGS_gpu_allocator_retry_time);                      \
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
      __cond__ = (COND);                                                \
      ++retry_count;                                                    \
    }                                                                   \
    if (UNLIKELY(__cond__ != __success_type__)) {                       \
      auto __summary__ = ::paddle::platform::errors::External(          \
          ::paddle::platform::build_nvidia_error_msg(__cond__));        \
      __THROW_ERROR_INTERNAL__(__summary__);                            \
    }                                                                   \
  } while (0)

1029
#undef DEFINE_CUDA_STATUS_TYPE
1030
#endif  // PADDLE_WITH_CUDA
S
add EQ  
Superjom 已提交
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/** HIP PADDLE ENFORCE FUNCTIONS AND MACROS **/
#ifdef PADDLE_WITH_HIP

/***** HIP ERROR *****/
inline bool is_error(hipError_t e) { return e != hipSuccess; }

inline std::string build_rocm_error_msg(hipError_t e) {
  std::ostringstream sout;
  sout << " Hip error(" << e << "), " << hipGetErrorString(e) << ".";
  return sout.str();
}

/** HIPRAND ERROR **/
inline bool is_error(hiprandStatus_t stat) {
  return stat != HIPRAND_STATUS_SUCCESS;
}

inline const char* hiprandGetErrorString(hiprandStatus_t stat) {
  switch (stat) {
    case HIPRAND_STATUS_SUCCESS:
      return "HIPRAND_STATUS_SUCCESS";
    case HIPRAND_STATUS_VERSION_MISMATCH:
      return "HIPRAND_STATUS_VERSION_MISMATCH";
    case HIPRAND_STATUS_NOT_INITIALIZED:
      return "HIPRAND_STATUS_NOT_INITIALIZED";
    case HIPRAND_STATUS_ALLOCATION_FAILED:
      return "HIPRAND_STATUS_ALLOCATION_FAILED";
    case HIPRAND_STATUS_TYPE_ERROR:
      return "HIPRAND_STATUS_TYPE_ERROR";
    case HIPRAND_STATUS_OUT_OF_RANGE:
      return "HIPRAND_STATUS_OUT_OF_RANGE";
    case HIPRAND_STATUS_LENGTH_NOT_MULTIPLE:
      return "HIPRAND_STATUS_LENGTH_NOT_MULTIPLE";
    case HIPRAND_STATUS_DOUBLE_PRECISION_REQUIRED:
      return "HIPRAND_STATUS_DOUBLE_PRECISION_REQUIRED";
    case HIPRAND_STATUS_LAUNCH_FAILURE:
      return "HIPRAND_STATUS_LAUNCH_FAILURE";
    case HIPRAND_STATUS_PREEXISTING_FAILURE:
      return "HIPRAND_STATUS_PREEXISTING_FAILURE";
    case HIPRAND_STATUS_INITIALIZATION_FAILED:
      return "HIPRAND_STATUS_INITIALIZATION_FAILED";
    case HIPRAND_STATUS_ARCH_MISMATCH:
      return "HIPRAND_STATUS_ARCH_MISMATCH";
    case HIPRAND_STATUS_INTERNAL_ERROR:
      return "HIPRAND_STATUS_INTERNAL_ERROR";
    case HIPRAND_STATUS_NOT_IMPLEMENTED:
      return "HIPRAND_STATUS_NOT_IMPLEMENTED";
    default:
      return "Unknown hiprand status";
  }
}

inline std::string build_rocm_error_msg(hiprandStatus_t stat) {
  std::string msg(" Hiprand error, ");
  return msg + hiprandGetErrorString(stat) + " ";
}

/***** MIOPEN ERROR *****/
inline bool is_error(miopenStatus_t stat) {
  return stat != miopenStatusSuccess;
}

inline std::string build_rocm_error_msg(miopenStatus_t stat) {
  std::string msg(" Miopen error, ");
  return msg + platform::dynload::miopenGetErrorString(stat) + " ";
}

/***** ROCBLAS ERROR *****/
inline bool is_error(rocblas_status stat) {
  return stat != rocblas_status_success;
}

inline const char* rocblasGetErrorString(rocblas_status stat) {
  switch (stat) {
    case rocblas_status_invalid_handle:
      return "rocblas_status_invalid_handle";
    case rocblas_status_memory_error:
      return "rocblas_status_memory_error";
    case rocblas_status_invalid_value:
      return "rocblas_status_invalid_value";
    case rocblas_status_not_implemented:
      return "rocblas_status_not_implemented";
    case rocblas_status_invalid_pointer:
      return "rocblas_status_invalid_pointer";
    case rocblas_status_invalid_size:
      return "rocblas_status_invalid_size";
    case rocblas_status_internal_error:
      return "rocblas_status_internal_error";
    default:
      return "Unknown cublas status";
  }
}

inline std::string build_rocm_error_msg(rocblas_status stat) {
  std::string msg(" Rocblas error, ");
  return msg + rocblasGetErrorString(stat) + " ";
}

/****** RCCL ERROR ******/
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
inline bool is_error(ncclResult_t nccl_result) {
  return nccl_result != ncclSuccess;
}

inline std::string build_rocm_error_msg(ncclResult_t nccl_result) {
  std::string msg(" Rccl error, ");
  return msg + platform::dynload::ncclGetErrorString(nccl_result) + " ";
}
#endif  // not(__APPLE__) and PADDLE_WITH_NCCL

namespace details {

template <typename T>
struct CudaStatusType {};

#define DEFINE_CUDA_STATUS_TYPE(type, success_value) \
  template <>                                        \
  struct CudaStatusType<type> {                      \
    using Type = type;                               \
    static constexpr Type kSuccess = success_value;  \
  }

DEFINE_CUDA_STATUS_TYPE(hipError_t, hipSuccess);
DEFINE_CUDA_STATUS_TYPE(hiprandStatus_t, HIPRAND_STATUS_SUCCESS);
DEFINE_CUDA_STATUS_TYPE(miopenStatus_t, miopenStatusSuccess);
DEFINE_CUDA_STATUS_TYPE(rocblas_status, rocblas_status_success);

#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
DEFINE_CUDA_STATUS_TYPE(ncclResult_t, ncclSuccess);
#endif

}  // namespace details

#define PADDLE_ENFORCE_CUDA_SUCCESS(COND)                      \
  do {                                                         \
    auto __cond__ = (COND);                                    \
    using __CUDA_STATUS_TYPE__ = decltype(__cond__);           \
    constexpr auto __success_type__ =                          \
        ::paddle::platform::details::CudaStatusType<           \
            __CUDA_STATUS_TYPE__>::kSuccess;                   \
    if (UNLIKELY(__cond__ != __success_type__)) {              \
      auto __summary__ = ::paddle::platform::errors::External( \
          ::paddle::platform::build_rocm_error_msg(__cond__)); \
      __THROW_ERROR_INTERNAL__(__summary__);                   \
    }                                                          \
  } while (0)

inline void retry_sleep(unsigned millisecond) {
#ifdef _WIN32
  Sleep(millisecond);
#else
  sleep(millisecond);
#endif
}

#define PADDLE_RETRY_CUDA_SUCCESS(COND)                                 \
  do {                                                                  \
    auto __cond__ = (COND);                                             \
    int retry_count = 1;                                                \
    using __CUDA_STATUS_TYPE__ = decltype(__cond__);                    \
    constexpr auto __success_type__ =                                   \
        ::paddle::platform::details::CudaStatusType<                    \
            __CUDA_STATUS_TYPE__>::kSuccess;                            \
    while (UNLIKELY(__cond__ != __success_type__) && retry_count < 5) { \
      retry_sleep(FLAGS_gpu_allocator_retry_time);                      \
      __cond__ = (COND);                                                \
      ++retry_count;                                                    \
    }                                                                   \
    if (UNLIKELY(__cond__ != __success_type__)) {                       \
      auto __summary__ = ::paddle::platform::errors::External(          \
          ::paddle::platform::build_rocm_error_msg(__cond__));          \
      __THROW_ERROR_INTERNAL__(__summary__);                            \
    }                                                                   \
  } while (0)

#undef DEFINE_CUDA_STATUS_TYPE
#endif  // PADDLE_WITH_HIP

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
#ifdef PADDLE_WITH_ASCEND_CL
namespace details {
template <typename T>
struct NPUStatusType {};

#define DEFINE_NPU_STATUS_TYPE(type, success_value) \
  template <>                                       \
  struct NPUStatusType<type> {                      \
    using Type = type;                              \
    static constexpr Type kSuccess = success_value; \
  }

DEFINE_NPU_STATUS_TYPE(aclError, ACL_ERROR_NONE);
}  // namespace details

inline std::string build_npu_error_msg(aclError stat) {
  std::ostringstream sout;
  sout << " ACL error, the error code is : " << stat << ". ";
  return sout.str();
}

#define PADDLE_ENFORCE_NPU_SUCCESS(COND)                       \
  do {                                                         \
    auto __cond__ = (COND);                                    \
    using __NPU_STATUS_TYPE__ = decltype(__cond__);            \
    constexpr auto __success_type__ =                          \
        ::paddle::platform::details::NPUStatusType<            \
            __NPU_STATUS_TYPE__>::kSuccess;                    \
    if (UNLIKELY(__cond__ != __success_type__)) {              \
      auto __summary__ = ::paddle::platform::errors::External( \
          ::paddle::platform::build_npu_error_msg(__cond__));  \
      __THROW_ERROR_INTERNAL__(__summary__);                   \
    }                                                          \
  } while (0)
#endif  // PADDLE_WITH_ASCEND_CL

1246 1247
}  // namespace platform
}  // namespace paddle