crop_op.h 3.9 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 CropdleCropdle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
19
#include "paddle/operators/strided_memcpy.h"
W
wanghaoshuang 已提交
20 21

namespace paddle {
22
namespace operators {  // Internal
W
wanghaoshuang 已提交
23 24 25 26 27

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
using framework::Tensor;
using framework::DDim;

// TODO(wanghaoshuang):  move this function to other place
DDim stride(const DDim& ddim) {
  std::vector<int64_t> strides(ddim.size());
  strides[ddim.size() - 1] = 1;
  for (int i = ddim.size() - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * ddim[i + 1];
  }
  return make_ddim(strides);
}

template <typename T>
class CropKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out = context.Output<Tensor>("Out");
    T* x_data = x->data<T>();
    T* out_data = out->mutable_data<T>(context.GetPlace());
    auto x_stride = stride(x->dims());
    auto out_stride = stride(out->dims());
    auto offsets = context.Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
        x_dims.size(), offsets.size(),
        "Offsets size should be equal to dimension size of input tensor.");
    int64_t offset = 0;
    for (int i = 0; i < offsets.size(); ++i) {
      offset += (x_stride[i] * offsets[i]);
    }
    StridedMemcpy<T>(context.device_context(), x_data + offset, x_stride,
                     out->dims(), out_stride, out_data);
  }
};
W
wanghaoshuang 已提交
63 64 65

template <typename Place, typename T, size_t D>
void CropGradFunction(const framework::ExecutionContext& context) {
66
  auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
67
  if (d_x != nullptr) {
68
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
69
    d_x->mutable_data<T>(context.GetPlace());
70
    auto offsets = context.Attr<std::vector<int>>("offsets");
71
    Eigen::array<std::pair<int, int>, D> paddings;
72
    for (int i = 0; i < D; ++i) {
73 74 75 76 77
      paddings[i].first = offsets[i];
      paddings[i].second = d_x_dims[i] - d_out_dims[i] - offsets[i];
    }
    auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
    auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
78 79
    d_x_tensor.device(context.GetEigenDevice<Place>()) =
        d_out_tensor.pad(paddings, 0);
W
wanghaoshuang 已提交
80 81 82 83 84 85 86
  }
}

template <typename Place, typename T>
class CropGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
87
    size_t rank =
88
        context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
89
    switch (rank) {
W
wanghaoshuang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
      case 1:
        CropGradFunction<Place, T, 1>(context);
        break;
      case 2:
        CropGradFunction<Place, T, 2>(context);
        break;
      case 3:
        CropGradFunction<Place, T, 3>(context);
        break;
      case 4:
        CropGradFunction<Place, T, 4>(context);
        break;
      case 5:
        CropGradFunction<Place, T, 5>(context);
        break;
      case 6:
        CropGradFunction<Place, T, 6>(context);
        break;
      default:
109 110
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
W
wanghaoshuang 已提交
111 112 113 114 115 116
    }
  }
};

}  // namespace operators
}  // namespace paddle