diag_v2_op.cu 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/diag_v2_op.h"

namespace paddle {
namespace operators {

// Extract the diagonal of a matrix 'x' to a vector 'out'.
template <typename T>
__global__ void ExtractDiagonalKernel(T* out, const T* x, std::ptrdiff_t start,
                                      std::ptrdiff_t size,
                                      const std::ptrdiff_t sumStride,
                                      const std::ptrdiff_t outStride) {
  for (std::ptrdiff_t idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size;
       idx += gridDim.x * blockDim.x) {
    const std::ptrdiff_t xOffset = start + sumStride * idx;
    out[outStride * idx] = x[xOffset];
  }
}

// Paste a vector 'x' to the diagonal of a matrix 'out'
template <typename T>
__global__ void PasteDiagonalKernel(T* out, const T* x, std::ptrdiff_t start,
                                    std::ptrdiff_t x_length,
                                    const std::ptrdiff_t sumStride,
                                    const std::ptrdiff_t xStride) {
  for (std::ptrdiff_t idx = blockIdx.x * blockDim.x + threadIdx.x;
       idx < x_length; idx += gridDim.x * blockDim.x) {
    const std::ptrdiff_t outOffset = start + sumStride * idx;
    out[outOffset] = x[xStride * idx];
  }
}

template <typename DeviceContext, typename T>
class DiagV2CUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* x_data = X->data<T>();
    auto x_dims = X->dims();
    int offset = context.Attr<int>("offset");
    auto* out = context.Output<framework::Tensor>("Out");
    T* out_data = out->mutable_data<T>(context.GetPlace());
    auto out_dims = out->dims();
    auto& dev_ctx = context.template device_context<DeviceContext>();

    if (x_dims.size() == 1) {
      float padding_value = context.Attr<float>("padding_value");
      math::SetConstant<DeviceContext, T> set_padding_value;
      set_padding_value(dev_ctx, out, static_cast<T>(padding_value));

      auto x_length = x_dims[0];
      auto size = (offset > 0) ? x_length + offset : x_length - offset;
      const int& x_stride = ComputeStride(0, x_dims);
      if (size > 0) {
        const int block_num = std::min(static_cast<int>(size),
                                       dev_ctx.GetMaxPhysicalThreadCount());
        int size_ = static_cast<int>(size);
        int block_num_ = static_cast<int>(block_num);
        const int grid_num =
            std::min(1024, (size_ + block_num_ - 1) / block_num_);
        const auto& out_stride_0 = ComputeStride(0, out_dims);
        const auto& out_stride_1 = ComputeStride(1, out_dims);
        auto start =
            (offset >= 0 ? offset * out_stride_1 : -offset * out_stride_0);

        PasteDiagonalKernel<T><<<grid_num, block_num, 0, dev_ctx.stream()>>>(
            out_data, x_data, start, x_length, out_stride_0 + out_stride_1,
            x_stride);
      }
    } else {
      const int& x_stride_0 = ComputeStride(0, x_dims);
      const int& x_stride_1 = ComputeStride(1, x_dims);

      int size;
      if (offset > 0) {
        size = std::min(x_dims[0], x_dims[1] - offset);
      } else {
        size = std::min(x_dims[0] + offset, x_dims[1]);
      }

      if (size > 0) {
        const int block_num = std::min(static_cast<int>(size),
                                       dev_ctx.GetMaxPhysicalThreadCount());
        int size_ = static_cast<int>(size);
        int block_num_ = static_cast<int>(block_num);
        const int grid_num =
            std::min(1024, (size_ + block_num_ - 1) / block_num_);
        auto start = (offset >= 0 ? offset * x_stride_1 : -offset * x_stride_0);
        const auto& out_stride_0 = ComputeStride(0, out_dims);

        ExtractDiagonalKernel<T><<<grid_num, block_num, 0, dev_ctx.stream()>>>(
            out_data, x_data, start, size, x_stride_0 + x_stride_1,
            out_stride_0);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    diag_v2, ops::DiagV2CUDAKernel<paddle::platform::CUDADeviceContext, int>,
    ops::DiagV2CUDAKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::DiagV2CUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::DiagV2CUDAKernel<paddle::platform::CUDADeviceContext, double>);