MKLDNNLayer.cpp 10.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNLayer.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

bool MKLDNNLayer::init(const LayerMap& layerMap,
                       const ParameterMap& parameterMap) {
T
tensor-tang 已提交
24
  CHECK(FLAGS_use_mkldnn) << "MKLDNNLayers only support use_mkldnn."
25
                          << "Please set WITH_MKL=ON "
T
tensor-tang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
                          << "and set use_mkldnn=True";
  CHECK(!useGpu_) << "Do not support GPU yet";

  // set device id before Layer::init
  setDevice(MKLDNN_DEVICE);
  // change param device to MKLDNN device
  setParamsDevice(MKLDNN_DEVICE, parameterMap);
  if (!Layer::init(layerMap, parameterMap)) {
    return false;
  }
  setOutputMap();
  checkCPUOutputsNumber();

  stream_.reset(new MKLDNNStream());
  engine_ = CPUEngine::Instance().getEngine();
  return true;
}

void MKLDNNLayer::forward(PassType passType) {
  passType_ = passType;

  {
    REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
    CHECK(!inputLayers_.empty());
    copySeqInfoToOutputs();
    size_t elemenCnt = inputLayers_[0]->getOutputValue()->getElementCnt();
    if (inputElemenCnt_ != elemenCnt) {
      VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
      // reset when input total sizes changed, not only the batchsize
      inputElemenCnt_ = elemenCnt;
      reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
57
      printSizeInfo();
58
      // the output_.value and output_.grad are shared with CPU device
T
tensor-tang 已提交
59
      shareCPUDevice();
60 61 62 63 64 65 66

      pipelineFwd_.clear();
      inVals_.resize(inputLayers_.size(), nullptr);
      extInVals_.resize(inputLayers_.size(), nullptr);
      cvtInVals_.resize(inputLayers_.size(), nullptr);
      resetFwd(pipelineFwd_, inVals_, outVal_);
      prepareValueConversions(pipelineFwd_);
T
tensor-tang 已提交
67 68 69 70 71
      convertWeightsFromPaddle();
      printValueFormat();
      needResetBwd_ = true;
    }

72
    if (inputLayers_[0]->getType() == "data" && inputLayers_.size() == 1) {
T
tensor-tang 已提交
73 74
      // Update input value data when input layer is "data" type,
      // since the input value data address might be changed.
75 76
      CHECK(extInVals_[0]);
      extInVals_[0]->setData(getInputValue(0, CPU_DEVICE)->getData());
T
tensor-tang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    }

    if (!outputOnlyMKLDNN_) {
      clearGrads();
    }
    stream_->submit(pipelineFwd_);
  }
  {
    REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
    forwardActivation();
  }
}

void MKLDNNLayer::backward(const UpdateCallback& callback) {
  if (needResetBwd_) {
    VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
    pipelineBwd_.clear();
    pipelineMergeGrad_.clear();
    mergeGrad_ = nullptr;
96
    resetBwd(pipelineBwd_, inGrad_, outGrad_);
T
tensor-tang 已提交
97 98 99
    // external output grad is not necessary
    // since output may be mkldnn internal buffer or merge them directly.
    CHECK(outGrad_) << "internal output grad is necessary";
100 101 102 103
    if (extOutGrad_) {
      CHECK_EQ(extOutGrad_->getData(), output_.grad->getData())
          << "the external buffer should share the same data with output_.grad";
    }
T
tensor-tang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    if (cvtOutGrad_) {
      pipelineBwd_.insert(pipelineBwd_.begin(), *cvtOutGrad_);
    }
    if (cvtInGrad_) {
      pipelineBwd_.push_back(*cvtInGrad_);
    }
    printGradFormat();
    needResetBwd_ = false;
  }

  // merge grad must before backward activation
  if (mergeGrad_) {
    REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str());
    stream_->submit(pipelineMergeGrad_);
  }
  {
    REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
    backwardActivation();
  }
  {
    REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
    stream_->submit(pipelineBwd_);
  }
  {
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    updateWeights(callback);
  }
}

133 134 135
void MKLDNNLayer::reshapeInput(int& batchsize,
                               int& height,
                               int& width,
136 137
                               size_t idx) {
  const Argument& input = inputLayers_[idx]->getOutput();
T
tensor-tang 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  batchsize = input.getBatchSize();
  int h = input.getFrameHeight();
  int w = input.getFrameWidth();
  if (h != 0) {
    height = h;
  }
  if (w != 0) {
    width = w;
  }
}

void MKLDNNLayer::reshapeOutput(size_t height, size_t width) {
  output_.setFrameHeight(height);
  output_.setFrameWidth(width);
  for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
    outputOtherDevice_[i].setFrameHeight(height);
    outputOtherDevice_[i].setFrameWidth(width);
  }
}

void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn,
                                  const MatrixPtr& mat,
                                  memory::primitive_desc pd) {
  dnn = nullptr;
  if (mat == nullptr) {
    return;
  }
  dnn = MKLDNNMatrix::create(pd, mat);
}

void MKLDNNLayer::resetInValue(
169 170
    MKLDNNMatrixPtr& in,
    const std::shared_ptr<memory::primitive_desc>& intPD,
171
    size_t idx,
172
    int inputChannel) {
173 174
  cvtInVals_[idx] = nullptr;
  extInVals_[idx] = nullptr;
T
tensor-tang 已提交
175
  in = nullptr;
176 177
  inputChannel = inputChannel == 0 ? ic_ : inputChannel;
  CHECK_GT(bs_ * inputChannel * ih_ * iw_, 0);
T
tensor-tang 已提交
178
  auto extPD = MKLDNNMatrix::createPrimitiveDesc(
179
      {bs_, inputChannel, ih_, iw_}, format::nchw, engine_);
180 181 182 183 184 185
  const MatrixPtr& inMat = inputLayers_[idx]->getOutputValue();
  extInVals_[idx] = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
  CHECK_EQ(inputIsOnlyMKLDNN(), extInVals_[idx] != nullptr);
  if (extInVals_[idx] == nullptr ||
      extInVals_[idx]->getFormat() == format::nc) {
    extInVals_[idx] = MKLDNNMatrix::create(extPD, inMat);
T
tensor-tang 已提交
186
  }
187
  in = extInVals_[idx];
T
tensor-tang 已提交
188 189 190 191 192
  if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) {
    return;
  }
  // need create reorder
  in = MKLDNNMatrix::create(*intPD);
193 194
  cvtInVals_[idx] = MKLDNNMatrix::createReorder(extInVals_[idx], in);
  CHECK(cvtInVals_[idx]) << "should not be emptry";
T
tensor-tang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
}

void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out,
                                memory::primitive_desc intPD) {
  cvtOutVal_ = nullptr;
  out = MKLDNNMatrix::create(intPD, output_.value);
  extOutVal_ = out;
  if (outputIsOnlyMKLDNN() || isPaddleFormat(extOutVal_->getFormat())) {
    return;
  }
  // need create reorder
  CHECK_GT(bs_ * oc_ * oh_ * ow_, 0);
  extOutVal_ = MKLDNNMatrix::create(
      memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_, output_.value);
  out = MKLDNNMatrix::create(intPD);
  cvtOutVal_ = MKLDNNMatrix::createReorder(out, extOutVal_);
  CHECK(cvtOutVal_) << "should not be empty";
}

void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in,
215
                              memory::primitive_desc intPD,
216
                              size_t idx) {
T
tensor-tang 已提交
217 218 219
  cvtInGrad_ = nullptr;
  extInGrad_ = nullptr;
  in = nullptr;
220
  LayerPtr& input = inputLayers_[idx];
T
tensor-tang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234
  if (input->getOutputGrad() == nullptr) {
    // no need input grad
    return;
  }
  CHECK(inputIsOnlyMKLDNN() || input->getOutputMapSize() <= 1)
      << "only support input is MKLDNN layer or only have one output layer";
  // when input is a mkldnn branch node,
  // this layer will save input grad to a internal buffer,
  // and the mkldnn input layer will merge them to actual prev->output_.grad
  const MatrixPtr& inMat =
      input->getOutputMapSize() <= 1 ? input->getOutputGrad() : nullptr;
  in = MKLDNNMatrix::create(intPD, inMat);
  Argument& arg = input->getOutput(this->getName());
  arg.grad = std::dynamic_pointer_cast<Matrix>(in);
235
  CHECK_PRIMITIVE_DESC_EQ(inVals_[idx], intPD);
T
tensor-tang 已提交
236 237 238 239 240 241 242 243 244
  if (inputIsOnlyMKLDNN()) {
    return;
  }

  extInGrad_ = in;
  if (isPaddleFormat(extInGrad_->getFormat())) {
    return;
  }
  // need create reorder
245 246
  CHECK(extInVals_[idx] != nullptr &&
        isPaddleFormat(extInVals_[idx]->getFormat()))
T
tensor-tang 已提交
247
      << "should have external input value and the format must be nchw(nc)";
248 249
  extInGrad_ = MKLDNNMatrix::create(extInVals_[idx]->getPrimitiveDesc(), inMat);
  CHECK_PRIMITIVE_DESC_EQ(inVals_[idx], intPD);
T
tensor-tang 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  in = MKLDNNMatrix::create(intPD);
  cvtInGrad_ = MKLDNNMatrix::createReorder(in, extInGrad_);
  CHECK(cvtInGrad_);
}

void MKLDNNLayer::resetOutGrad(MKLDNNMatrixPtr& out,
                               memory::primitive_desc intPD) {
  cvtOutGrad_ = nullptr;
  extOutGrad_ = nullptr;
  out = nullptr;
  MatrixPtr& outMat = output_.grad;
  out = MKLDNNMatrix::create(intPD, outMat);
  resetMergeGrad(out);
  if (outputIsOnlyMKLDNN()) {
    return;
  }
  CHECK_LE(outputMap_.size(), 1U) << "do not support mixed with cpu device";
  extOutGrad_ = out;
  if (isPaddleFormat(extOutGrad_->getFormat())) {
    return;
  }
  // need create reorder
  CHECK(extOutVal_ != nullptr && isPaddleFormat(extOutVal_->getFormat()))
      << "should have external output value and the format must be nchw(nc)";
  extOutGrad_ = MKLDNNMatrix::create(extOutVal_->getPrimitiveDesc(), outMat);
T
tensor-tang 已提交
275
  CHECK_PRIMITIVE_DESC_EQ(outVal_, intPD);
T
tensor-tang 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288
  out = MKLDNNMatrix::create(intPD);
  cvtOutGrad_ = MKLDNNMatrix::createReorder(extOutGrad_, out);
  CHECK(cvtOutGrad_);
}

void MKLDNNLayer::resetMergeGrad(MKLDNNMatrixPtr& out) {
  mergeGrad_ = nullptr;
  pipelineMergeGrad_.clear();
  if (outputMap_.size() <= 1 || !outputIsOnlyMKLDNN()) {
    // do not merge when output is not all MKLDNN or only one output
    return;
  }
  CHECK(out) << "should have reset internal ouput grad";
T
tensor-tang 已提交
289
  std::vector<float> scales(outputMap_.size(), 1.0);
T
tensor-tang 已提交
290 291 292 293 294 295 296 297 298 299 300 301
  std::vector<memory::primitive_desc> srcPDs;
  std::vector<primitive::at> srcs;
  for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) {
    MKLDNNMatrixPtr src =
        std::dynamic_pointer_cast<MKLDNNMatrix>(it->second->grad);
    CHECK(src) << "should be MKLDNNMatrix";
    auto srcDims = src->getDims();
    auto dstDims = out->getDims();
    CHECK_EQ(srcDims.size(), dstDims.size());
    for (size_t i = 0; i < srcDims.size(); ++i) {
      CHECK_EQ(srcDims[i], dstDims[i]);
    }
302 303
    VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first
                      << ", format " << src->getFormat();
T
tensor-tang 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    srcPDs.push_back(src->getPrimitiveDesc());
    srcs.push_back(*src);
  }

  // TODO(TJ): remove me when mkldnn sum support different formats
  for (size_t i = 1; i < srcPDs.size(); ++i) {
    CHECK(srcPDs[0] == srcPDs[i]);
  }
  tmpOutGrad_ = out;
  tmpCvt_ = nullptr;
  if (out->getPrimitiveDesc() != srcPDs[0]) {
    tmpOutGrad_ = MKLDNNMatrix::create(srcPDs[0]);
    tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out);
    CHECK(tmpCvt_);
    pipelineMergeGrad_.push_back(*tmpCvt_);
  }

  auto sumPD =
      sum::primitive_desc(tmpOutGrad_->getMemoryDesc(), scales, srcPDs);
  mergeGrad_.reset(new sum(sumPD, srcs, *tmpOutGrad_));
  pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_);
}

}  // namespace paddle