shuffle_batch_op.h 5.2 KB
Newer Older
Z
zhoushiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <atomic>
#include <cstring>
#include <ctime>
#include <random>
#include <string>
Y
yaoxuefeng 已提交
22
#include <utility>
Z
zhoushiyu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
36

Z
zhoushiyu 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
template <typename T>
using Vector = framework::Vector<T>;

template <typename T>
class ShuffleBatchKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *x = context.Input<LoDTensor>("X");
    auto *seed = context.Input<LoDTensor>("Seed");
    auto *out = context.Output<LoDTensor>("Out");
    auto *shuffleidx = context.Output<LoDTensor>("ShuffleIdx");
    auto *seed_out = context.Output<LoDTensor>("SeedOut");

    auto x_embed_size = x->dims()[x->dims().size() - 1];
    auto elem_size = 1;
    for (auto i = 0; i < x->dims().size() - 1; i++) elem_size *= x->dims()[i];

    std::vector<int64_t> idx_vec;  // record shuffled order
    idx_vec.reserve(elem_size);
    for (auto i = 0; i < elem_size; i++) {
      idx_vec.push_back(i);
    }
    int64_t seed_int = 0;
    if (seed->IsInitialized()) {
      seed_int = *seed->data<int64_t>();
    } else {
      seed_int = context.Attr<int>("startup_seed");
    }
    std::default_random_engine engine;
    engine.seed(seed_int);
Y
yaoxuefeng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    auto custom_random_shuffle = [&idx_vec]() {
      std::random_device rnd;
      int64_t seed_tmp = rnd();
      std::default_random_engine rng(seed_tmp);
      const int n = idx_vec.size();
      std::vector<int> v(n);
      std::iota(v.begin(), v.end(), 0);
      std::vector<bool> visit(n, false);
      while (!v.empty()) {
        std::shuffle(v.begin(), v.end(), rng);
        int tmp = v.back();
        v.pop_back();
        if (v.empty()) {
          std::uniform_int_distribution<int> distr(0, n - 2);
          idx_vec[tmp] = tmp;
          std::swap(idx_vec[tmp], idx_vec[(distr(rng) + tmp + 1) % n]);
          return;
        }
        visit[tmp] = true;
        std::shuffle(v.begin(), v.end(), rng);
        int curr = v.back();
        v.pop_back();
        v.push_back(tmp);
        idx_vec[tmp] = curr;
        while (!visit[curr]) {
          visit[curr] = true;
          std::shuffle(v.begin(), v.end(), rng);
          idx_vec[curr] = v.back();
          v.pop_back();
          curr = idx_vec[curr];
        }
      }
    };
    custom_random_shuffle();
    // change shuffle to custom_random_shuffle
    // std::shuffle(idx_vec.begin(), idx_vec.end(), engine);
Z
zhoushiyu 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

    // ShuffleIdx record shuffle order
    shuffleidx->Resize(framework::make_ddim({(int64_t)idx_vec.size()}));
    auto *shuffleidx_data =
        shuffleidx->mutable_data<int64_t>(context.GetPlace());
    for (size_t i = 0; i < idx_vec.size(); i++) {
      shuffleidx_data[i] = idx_vec[i];
    }
    // copy data according to idx_vec
    auto *x_data = x->data<T>();
    auto *out_data = out->mutable_data<T>(context.GetPlace());
    for (auto i = 0; i < elem_size; i++) {
      memcpy(out_data + idx_vec[i] * x_embed_size, x_data + i * x_embed_size,
             x_embed_size * sizeof(T));
    }
    // set new seed
    *seed_out->mutable_data<int64_t>(framework::make_ddim({1}),
                                     context.GetPlace()) = engine();
  }
};

template <typename T>
class ShuffleBatchGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *out_grad = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto *shuffleidx = context.Input<LoDTensor>("ShuffleIdx");
    auto *x_grad = context.Output<LoDTensor>(framework::GradVarName("X"));

    auto embed_size = out_grad->dims()[out_grad->dims().size() - 1];
    auto elem_size = 1;
    for (auto i = 0; i < out_grad->dims().size() - 1; i++)
      elem_size *= out_grad->dims()[i];

    std::vector<int> idx_vec_grad(elem_size);
    auto *shuffleidx_data = shuffleidx->data<int64_t>();
    for (size_t i = 0; i < idx_vec_grad.size(); i++) {
      idx_vec_grad[shuffleidx_data[i]] = i;
    }

    // copy data according to idx_vec_grad
    auto *out_grad_data = out_grad->data<T>();
    auto *x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
    for (auto i = 0; i < elem_size; i++) {
      memcpy(x_grad_data + idx_vec_grad[i] * embed_size,
             out_grad_data + i * embed_size, embed_size * sizeof(T));
    }
  }
};
}  // namespace operators
}  // namespace paddle