test_imperative_ptb_rnn.py 14.7 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19
from paddle.fluid.imperative.nn import Embedding
J
JiabinYang 已提交
20 21 22
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.base import to_variable
23
from test_imperative_base import new_program_scope
J
JiabinYang 已提交
24
import numpy as np
25
import six
J
JiabinYang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from paddle.fluid.backward import append_backward


class SimpleLSTMRNN(fluid.imperative.Layer):
    def __init__(self,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
        super(SimpleLSTMRNN, self).__init__()
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
41 42
        self._input = None
        self._num_steps = num_steps
J
JiabinYang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.hidden_array = []
        self.cell_array = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = fluid.layers.create_parameter(
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                name="fc_weight1_" + str(i),
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(weight_1)
            bias_1 = fluid.layers.create_parameter(
                [self._hidden_size * 4],
                dtype="float32",
                name="fc_bias1_" + str(i),
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(bias_1)

            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

78 79 80 81 82 83 84 85 86 87
    def parameters(self):
        parameters = list()
        for param in self.weight_1_arr:
            parameters.append(param)
        for param in self.weight_2_arr:
            parameters.append(param)
        for bias in self.bias_arr:
            parameters.append(bias)
        return parameters

J
JiabinYang 已提交
88 89
    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        res = []
90 91
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
J
JiabinYang 已提交
92
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
93 94
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
J
JiabinYang 已提交
95 96 97 98 99 100
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

101
                nn = fluid.layers.concat([self._input, pre_hidden], 1)
J
JiabinYang 已提交
102 103 104
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell
J
JiabinYang 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155


class PtbModel(fluid.imperative.Layer):
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
        super(PtbModel, self).__init__()
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
156
        self.embedding = Embedding(
J
JiabinYang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = fluid.layers.create_parameter(
            [self.hidden_size, self.vocab_size],
            dtype="float32",
            name="softmax_weight",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = fluid.layers.create_parameter(
            [self.vocab_size],
            dtype="float32",
            name='softmax_bias',
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

177 178 179
    def _build_once(self, input, label, init_hidden, init_cell):
        pass

180 181 182 183 184 185
    def parameters(self):
        parameters = self.simple_lstm_rnn.parameters() + [
            self.softmax_weight, self.softmax_bias
        ] + self.embedding.parameters()
        return parameters

J
JiabinYang 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def forward(self, input, label, init_hidden, init_cell):

        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
206
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
J
JiabinYang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)
        loss.permissions = True

        return loss, last_hidden, last_cell


class TestImperativePtbRnn(unittest.TestCase):
223
    def test_ptb_rnn_cpu_float32(self):
J
JiabinYang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4

        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            sgd = SGDOptimizer(learning_rate=1e-3)
244 245
            dy_param_updated = dict()
            dy_param_init = dict()
J
JiabinYang 已提交
246 247 248
            dy_loss = None
            last_hidden = None
            last_cell = None
J
JiabinYang 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
            for i in range(2):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                if i == 0:
265
                    for param in ptb_model.parameters():
J
JiabinYang 已提交
266 267 268
                        dy_param_init[param.name] = param._numpy()
                dy_loss._backward()
                sgd.minimize(dy_loss)
269
                for param in ptb_model.parameters():
J
JiabinYang 已提交
270
                    dy_param_updated[param.name] = param._numpy()
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            exe = fluid.Executor(fluid.CPUPlace())
            sgd = SGDOptimizer(learning_rate=1e-3)
            x = fluid.layers.data(name="x", shape=[-1, 3, 1], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()
            static_param_name_list = list()
298
            for param in ptb_model.parameters():
299 300 301 302 303 304
                static_param_name_list.append(param.name)

            out = exe.run(framework.default_startup_program(),
                          fetch_list=static_param_name_list)
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
J
JiabinYang 已提交
305 306 307
            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
            for i in range(2):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_cell_value = out[1]
                static_last_hidden_value = out[2]
J
JiabinYang 已提交
330 331 332
                for k in range(3, len(out)):
                    static_param_updated[static_param_name_list[k - 3]] = out[k]

333 334 335 336 337 338 339 340 341 342 343 344 345 346
            self.assertTrue(
                np.allclose(static_loss_value.all(), dy_loss._numpy().all()))
            self.assertTrue(
                np.allclose(static_last_cell_value.all(),
                            last_cell._numpy().all()))
            self.assertTrue(
                np.allclose(static_last_hidden_value.all(),
                            last_hidden._numpy().all()))
            for key, value in six.iteritems(static_param_init):
                self.assertTrue(
                    np.allclose(value.all(), dy_param_init[key].all()))
            for key, value in six.iteritems(static_param_updated):
                self.assertTrue(
                    np.allclose(value.all(), dy_param_updated[key].all()))
J
JiabinYang 已提交
347 348 349 350


if __name__ == '__main__':
    unittest.main()