pad_op.cc 4.1 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/pad_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
28 29 30 31 32
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "Input(X) of PadOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Output(Out) of PadOp should not be null.");

W
wanghaoshuang 已提交
33 34
    auto x_dim = ctx.Input<Tensor>("X")->dims();
    auto paddings = Attr<std::vector<int>>("paddings");
W
wanghaoshuang 已提交
35
    PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
W
wanghaoshuang 已提交
36 37
                      "Size of paddings should be equal to 2 * dimension size "
                      "of input tensor.");
W
wanghaoshuang 已提交
38
    std::vector<int64_t> out_dims(x_dim.size());
W
wanghaoshuang 已提交
39 40
    for (int i = 0; i < x_dim.size(); ++i) {
      out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
W
wanghaoshuang 已提交
41
    }
42
    ctx.Output<framework::Tensor>("Out")->Resize(
43
        framework::make_ddim(out_dims));
D
Fix bug  
dangqingqing 已提交
44 45 46
    if (out_dims[0] == x_dim[0]) {
      // Only pass LoD when the first dimension is equal between
      // output and input.
47
      ctx.ShareLoD("X", /*->*/ "Out");
D
Fix bug  
dangqingqing 已提交
48
    }
W
wanghaoshuang 已提交
49 50 51
  }
};

W
wanghaoshuang 已提交
52
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
53
 public:
W
wanghaoshuang 已提交
54
  PadOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
W
wanghaoshuang 已提交
55
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
56 57 58 59 60
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddOutput("Out",
              "The output of pad op."
W
wanghaoshuang 已提交
61 62
              "A tensor with the same shape as X.")
        .NotInGradient();
W
wanghaoshuang 已提交
63
    AddComment(R"DOC(
W
wanghaoshuang 已提交
64 65 66 67 68 69 70 71 72
Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example:

Given:

X = [[1, 2],
   [3, 4]]

and 

W
wanghaoshuang 已提交
73
paddings = [0, 1, 1, 2]
W
wanghaoshuang 已提交
74 75 76 77 78 79 80 81 82 83

and
 
pad_value = 0 

then we get 

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
W
wanghaoshuang 已提交
84
)DOC");
W
wanghaoshuang 已提交
85 86
    AddAttr<std::vector<int>>(
        "paddings",
W
wanghaoshuang 已提交
87 88
        "A list<int> to describes padding rules for each dimension."
        " For 2-D image tensor, paddings=[0, 1, 2, 3] means"
W
wanghaoshuang 已提交
89
        " padding 0 row to top, 1 row to bottom, 2 columns to left"
W
wanghaoshuang 已提交
90 91
        " and 3 columns to right.Size of paddings should be equal to"
        " 2 * dimension size of input tensor.");
W
wanghaoshuang 已提交
92 93
    AddAttr<float>("pad_value",
                   "(float) default to 0; "
W
wanghaoshuang 已提交
94
                   "The value to fill padded areas.")
W
wanghaoshuang 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108
        .SetDefault(0.0f);
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null");
    auto x_dims = ctx.Input<Tensor>("X")->dims();
109
    auto *x_g = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
110 111
    if (x_g != nullptr) {
      x_g->Resize(x_dims);
W
wanghaoshuang 已提交
112
    }
W
wanghaoshuang 已提交
113 114 115 116 117 118 119 120 121 122 123
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(pad, ops::PadOp, ops::PadOpMaker, pad_grad, ops::PadOpGrad);
REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pad_grad,
                       ops::PadGradKernel<paddle::platform::CPUPlace, float>);