sgd_op.h 2.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
D
dongzhihong 已提交
16 17
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
Q
qijun 已提交
18
#include "paddle/framework/selected_rows.h"
Q
Qiao Longfei 已提交
19 20 21 22

namespace paddle {
namespace operators {

Q
QI JUN 已提交
23
template <typename DeviceContext, typename T>
Q
qijun 已提交
24
struct SparseSGDFunctor {
Q
QI JUN 已提交
25
  void operator()(const DeviceContext& context,
Q
qijun 已提交
26 27 28 29 30
                  const framework::SelectedRows& input,
                  const framework::Tensor& learning_rate,
                  framework::Tensor* output);
};

Q
QI JUN 已提交
31
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
32
class SGDOpKernel : public framework::OpKernel<T> {
33
 public:
D
dongzhihong 已提交
34
  void Compute(const framework::ExecutionContext& ctx) const override {
Q
qijun 已提交
35 36 37
    auto* param = ctx.Input<framework::Tensor>("Param");
    auto* param_out = ctx.Output<framework::Tensor>("ParamOut");
    auto* learning_rate = ctx.Input<framework::Tensor>("LearningRate");
Q
Qiao Longfei 已提交
38

Q
qijun 已提交
39
    auto* grad_var = ctx.InputVar("Grad");
Q
qijun 已提交
40 41
    // Actually, all tensors are LoDTensor except SelectedRows.
    if (grad_var->IsType<framework::LoDTensor>()) {
Q
qijun 已提交
42 43
      param_out->mutable_data<T>(ctx.GetPlace());
      auto* grad = ctx.Input<framework::Tensor>("Grad");
Q
Qiao Longfei 已提交
44

Q
qijun 已提交
45 46 47 48
      auto p = framework::EigenVector<T>::Flatten(*param);
      auto g = framework::EigenVector<T>::Flatten(*grad);
      auto o = framework::EigenVector<T>::Flatten(*param_out);
      auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
Q
QI JUN 已提交
49 50
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
L
liaogang 已提交
51

Q
qijun 已提交
52 53 54 55 56 57 58 59
      Eigen::DSizes<int, 1> grad_dsize(grad->numel());
      o.device(place) = p - lr.broadcast(grad_dsize) * g;
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      // TODO(qijun): In Sparse SGD operator, in-place update is enforced.
      // This manual optimization brings difficulty to track data dependency.
      // It's better to find a more elegant solution.
      PADDLE_ENFORCE_EQ(param, param_out);
      auto* grad = ctx.Input<framework::SelectedRows>("Grad");
Q
QI JUN 已提交
60 61 62
      SparseSGDFunctor<DeviceContext, T> functor;
      functor(ctx.template device_context<DeviceContext>(), *grad,
              *learning_rate, param_out);
Q
qijun 已提交
63 64 65
    } else {
      PADDLE_THROW("Unsupported Variable Type of Grad");
    }
Q
Qiao Longfei 已提交
66 67 68 69
  }
};
}  // namespace operators
}  // namespace paddle