stacked_dynamic_lstm.py 4.2 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import cPickle
import os
import random
import time

import numpy
26 27
import paddle
import paddle.dataset.imdb as imdb
D
dzhwinter 已提交
28
import paddle.fluid as fluid
29
import paddle.batch as batch
D
dzhwinter 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
import paddle.fluid.profiler as profiler

word_dict = imdb.word_dict()


def crop_sentence(reader, crop_size):
    unk_value = word_dict['<unk>']

    def __impl__():
        for item in reader():
            if len([x for x in item[0] if x != unk_value]) < crop_size:
                yield item

    return __impl__


46
def get_model(args):
Y
yi.wu 已提交
47 48 49
    if args.use_reader_op:
        raise Exception(
            "stacked_dynamic_lstm do not support reader op for now.")
50 51 52
    lstm_size = 512
    emb_dim = 512
    crop_size = 1500
D
dzhwinter 已提交
53 54 55 56

    data = fluid.layers.data(
        name="words", shape=[1], lod_level=1, dtype='int64')
    sentence = fluid.layers.embedding(
57
        input=data, size=[len(word_dict), emb_dim])
D
dzhwinter 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    sentence = fluid.layers.fc(input=sentence, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(
                ipt,
                hidden,
                size, ):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            gate = fluid.layers.sums(input=[gate0, gate1])
            return gate

        forget_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        input_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        output_gate = fluid.layers.sigmoid(
            x=gate_common(word, prev_hidden, lstm_size))
        cell_gate = fluid.layers.tanh(
            x=gate_common(word, prev_hidden, lstm_size))

        cell = fluid.layers.sums(input=[
            fluid.layers.elementwise_mul(
                x=forget_gate, y=prev_cell), fluid.layers.elementwise_mul(
                    x=input_gate, y=cell_gate)
        ])

        hidden = fluid.layers.elementwise_mul(
            x=output_gate, y=fluid.layers.tanh(x=cell))

        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_pool(rnn(), 'last')
    logit = fluid.layers.fc(input=last, size=2, act='softmax')
    loss = fluid.layers.cross_entropy(
        input=logit,
        label=fluid.layers.data(
            name='label', shape=[1], dtype='int64'))
    loss = fluid.layers.mean(x=loss)

    # add acc
107
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
D
dzhwinter 已提交
108
    batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \
109
                shape=[1], dtype='int64'), total=batch_size_tensor)
D
dzhwinter 已提交
110 111 112 113 114 115 116 117

    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        inference_program = fluid.io.get_inference_program(
            target_vars=[batch_acc, batch_size_tensor])

    adam = fluid.optimizer.Adam()

D
dzhwinter 已提交
118 119
    train_reader = batch(
        paddle.reader.shuffle(
120
            crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000),
Y
yi.wu 已提交
121
        batch_size=args.batch_size * args.gpus)
122 123 124
    test_reader = batch(
        paddle.reader.shuffle(
            crop_sentence(imdb.test(word_dict), crop_size), buf_size=25000),
D
dzhwinter 已提交
125 126
        batch_size=args.batch_size)

127
    return loss, inference_program, adam, train_reader, test_reader, batch_acc