tensor_array_read_write_op.cc 8.2 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
Y
Yang Yu 已提交
14
#include "paddle/operators/array_operator.h"
Y
Yang Yang(Tony) 已提交
15
#include "paddle/operators/detail/safe_ref.h"
Y
Yu Yang 已提交
16 17 18
namespace paddle {
namespace operators {

Y
Yang Yu 已提交
19
class WriteToArrayOp : public ArrayOp {
Y
Yu Yang 已提交
20 21 22 23 24
 public:
  WriteToArrayOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
25
      : ArrayOp(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
26 27

  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
28
           const platform::Place &place) const override {
Y
Yu Yang 已提交
29
    auto *x = scope.FindVar(Input("X"));
30
    if (x == nullptr) return;
Y
Yu Yang 已提交
31
    auto &x_tensor = x->Get<framework::LoDTensor>();
D
dzhwinter 已提交
32
    size_t offset = GetOffset(scope, place);
Y
Yu Yang 已提交
33 34 35
    auto *out =
        scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensorArray>();
    if (offset >= out->size()) {
Y
Yang Yang(Tony) 已提交
36 37
      VLOG(10) << "Resize " << Output("Out") << " from " << out->size()
               << " to " << offset + 1;
Y
Yu Yang 已提交
38 39
      out->resize(offset + 1);
    }
40 41
    if (x_tensor.memory_size() > 0) {
      auto *out_tensor = &out->at(offset);
D
dzhwinter 已提交
42 43 44 45 46

      platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
      auto &dev_ctx = *pool.Borrow(place);

      CopyFrom(x_tensor, place, dev_ctx, out_tensor);
47 48 49 50 51 52
      out_tensor->set_lod(x_tensor.lod());
    } else {
      VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so "
                  "nothing has been written to output array["
               << offset << "].";
    }
Y
Yu Yang 已提交
53 54 55 56 57
  }
};

class WriteToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
58
  WriteToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
59 60 61 62 63 64 65
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(LoDTensor) the tensor will be written to tensor array");
    AddInput(
        "I",
        "(Tensor) the subscript index in tensor array. The number of element "
        "should be 1");
    AddOutput("Out", "(TensorArray) the tensor array will be written");
66 67
    AddComment(R"DOC(
WriteToArray Operator.
Y
Yu Yang 已提交
68

69 70 71
This operator writes a LoDTensor to a LoDTensor array.

Assume $T$ is LoDTensor, $i$ is the subscript of the array, and $A$ is the array. The
Y
Yu Yang 已提交
72 73
equation is

74 75
$$A[i] = T$$

Y
Yu Yang 已提交
76 77 78 79 80 81 82 83 84 85
)DOC");
  }
};

class WriteToArrayInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("I"), "Must set the subscript index");
    PADDLE_ENFORCE_EQ(framework::product(context->GetInputDim("I")), 1,
                      "The number of element of subscript index must be 1");
86 87 88
    if (!context->HasInput("X")) {
      return;
    }
Y
Yu Yang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102
    PADDLE_ENFORCE(context->HasOutput("Out"), NotHasOutError());
    context->SetOutputDim("Out", context->GetInputDim("X"));
  }

 protected:
  virtual const char *NotHasXError() const { return "Must set the lod tensor"; }

  virtual const char *NotHasOutError() const {
    return "Must set the lod tensor array";
  }
};

class WriteToArrayInferVarType : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
103 104
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yang(Tony) 已提交
105 106 107 108 109
    auto x_name = op_desc.Input("X")[0];
    auto out_name = op_desc.Output("Out")[0];
    VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY";
    auto &out = detail::Ref(block->FindRecursiveOrCreateVar(out_name),
                            "Cannot found %s", out_name);
110
    out.SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY);
111 112 113 114
    auto *x = block->FindVarRecursive(x_name);
    if (x != nullptr) {
      out.SetDataType(x->GetDataType());
    }
Y
Yu Yang 已提交
115 116 117
  }
};

Y
Yang Yu 已提交
118
class ReadFromArrayOp : public ArrayOp {
Y
Yu Yang 已提交
119 120 121 122 123
 public:
  ReadFromArrayOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
124
      : ArrayOp(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
125
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
126
           const platform::Place &place) const override {
Y
Yu Yang 已提交
127 128 129 130 131
    auto *x = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x != nullptr, "X must be set");
    auto &x_array = x->Get<framework::LoDTensorArray>();
    auto *out = scope.FindVar(Output("Out"));
    PADDLE_ENFORCE(out != nullptr, "Out must be set");
Y
Yang Yang(Tony) 已提交
132
    auto *out_tensor = out->GetMutable<framework::LoDTensor>();
D
dzhwinter 已提交
133
    size_t offset = GetOffset(scope, place);
134
    if (offset < x_array.size()) {
D
dzhwinter 已提交
135 136 137
      platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
      auto &dev_ctx = *pool.Borrow(place);
      framework::CopyFrom(x_array[offset], place, dev_ctx, out_tensor);
138
      out_tensor->set_lod(x_array[offset].lod());
Y
Yang Yu 已提交
139 140 141 142 143 144 145 146 147 148 149
      if (Input("X") == "dynamic_rnn_0_output_array_fc_0.tmp_0_0@GRAD") {
        VLOG(10) << "Offset = " << offset;
        if (x_array[offset].numel() != 0) {
          auto d = x_array[offset].dims();
          std::ostringstream sout;
          for (int64_t i = 0; i < d[0]; ++i) {
            sout << x_array[offset].data<float>()[0 * d[1]] << ", ";
          }
          VLOG(10) << "Grad = " << sout.str();
        }
      }
150 151 152
    } else {
      VLOG(10) << "offset " << offset << " >= " << x_array.size();
    }
Y
Yu Yang 已提交
153 154 155 156 157
  }
};

class ReadFromArrayProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
158
  ReadFromArrayProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
159 160 161 162 163 164
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(TensorArray) the array will be read from.");
    AddInput("I",
             "(Tensor) the subscript index in tensor array. The number of "
             "element should be 1");
    AddOutput("Out", "(LoDTensor) the tensor will be read from.");
165 166
    AddComment(R"DOC(
ReadFromArray Operator.
Y
Yu Yang 已提交
167

168 169 170
Read a LoDTensor from a LoDTensor Array.

Assume $T$ is LoDTensor, $i$ is the subscript of the array, and $A$ is the array. The
Y
Yu Yang 已提交
171 172
equation is

173 174
$$T = A[i]$$

Y
Yu Yang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
)DOC");
  }
};

class ReadFromArrayInferShape : public WriteToArrayInferShape {
 protected:
  const char *NotHasXError() const override {
    return "The input array X must be set";
  }
  const char *NotHasOutError() const override {
    return "The output tensor out must be set";
  }
};

class WriteToArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
194 195
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
196 197 198 199 200
    grad_op->SetType("read_from_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
201
    return std::unique_ptr<framework::OpDesc>(grad_op);
Y
Yu Yang 已提交
202 203 204 205 206 207 208 209
  }
};

class ReadFromArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
210 211
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
212 213 214 215 216
    grad_op->SetType("write_to_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
217
    return std::unique_ptr<framework::OpDesc>(grad_op);
Y
Yu Yang 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(write_to_array, ops::WriteToArrayOp,
                  ops::WriteToArrayInferShape, ops::WriteToArrayOpProtoMaker,
                  ops::WriteToArrayGradMaker, ops::WriteToArrayInferVarType);
REGISTER_OPERATOR(read_from_array, ops::ReadFromArrayOp,
                  ops::ReadFromArrayInferShape, ops::ReadFromArrayProtoMaker,
                  ops::ReadFromArrayGradMaker);