onnxruntime_predictor.h 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/framework/op_compatible_info.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
#include "paddle/fluid/string/printf.h"

#include "onnxruntime_c_api.h"    // NOLINT
#include "onnxruntime_cxx_api.h"  // NOLINT
#include "paddle2onnx/converter.h"

#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif

///
/// \file onnxruntime_predictor.h
///
/// \brief A predictor using ONNXRuntime
///
/// \author heliqi@baidu.com
/// \date 2022-02-14
/// \since 2.3.0
///

namespace paddle {

bool CheckConvertToONNX(const AnalysisConfig &config);

struct ONNXDesc {
  std::string name;
  std::vector<int64_t> shape;
  ONNXTensorElementDataType dtype;
};

///
/// \class ONNXRuntimePredictor
///
/// \brief The ONNXRuntimePredictor using ONNXRuntime for inference
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
class ONNXRuntimePredictor : public PaddlePredictor {
 public:
  ///
  /// \brief Construct a new ONNXRuntime Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
  explicit ONNXRuntimePredictor(const AnalysisConfig &config)
97
      : config_(config), env_(ORT_LOGGING_LEVEL_WARNING, "onnx") {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    predictor_id_ = inference::GetUniqueId();
  }
  ///
  /// \brief Destroy the ONNXRuntime Predictor object
  ///
  ~ONNXRuntimePredictor();

  ///
  /// \brief Initialize predictor
  ///
  /// \return Whether the init function executed successfully
  ///
  bool Init();

  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
  std::vector<std::string> GetInputNames();

  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
  std::vector<std::string> GetOutputNames();

  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;

  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;

  /// Not supoort
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
  bool ZeroCopyRun() override;

  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
  std::unique_ptr<PaddlePredictor> Clone() override;

 private:
  ///
181
  /// \brief Whether to find in/out by name.
182
  ///
183
  /// \param[in] name input or output name
184
  ///
185
  /// \param[in] is_input input(true) or output(false)
186
  ///
187
  /// \return Whether to find by name
188
  ///
189
  bool FindONNXDesc(const std::string &name, bool is_input);
190 191 192 193 194 195 196

 private:
  AnalysisConfig config_;

  // ONNXRuntime
  Ort::Env env_;
  Ort::Session session_{nullptr};
197
  std::shared_ptr<Ort::IoBinding> binding_;
198 199 200 201

  platform::Place place_;
  std::vector<ONNXDesc> input_desc_;
  std::vector<ONNXDesc> output_desc_;
202
  std::map<std::string, std::shared_ptr<std::vector<int8_t>>> input_buffers_;
203 204 205 206 207 208 209 210 211 212
  int predictor_id_;

// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(ONNXRuntimePredictor, onnxruntime_on);
#endif
};

}  // namespace paddle