scale_op.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * ConcatOp
 */
class ScaleOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(3) << "convert a fluid scale op to tensorrt mul layer without bias";

    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    std::vector<nvinfer1::ITensor*> itensors;
    std::string input_name = op_desc.Input("X").front();
    std::string out_name = op_desc.Output("Out").front();

    auto input = engine_->GetITensor(input_name);
    bool bias_after_scale =
        boost::get<bool>(op_desc.GetAttr("bias_after_scale"));
    float bias = boost::get<float>(op_desc.GetAttr("bias"));
    float scale = boost::get<float>(op_desc.GetAttr("scale"));
    auto create_weights = [&](float data, std::string type) -> float* {
      std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
      tmp_tensor->Resize({1});
      auto* tmp_data = tmp_tensor->mutable_data<float>(platform::CPUPlace());
      tmp_data[0] = data;
      engine_->SetWeights(out_name + "_scale_op_" + type,
                          std::move(tmp_tensor));
      return tmp_data;
    };

51 52
    int dynamic_shape_offset = engine_->with_dynamic_shape() ? 1 : 0;

53 54 55 56 57 58 59 60 61 62
    float* bias_ptr = create_weights(bias, "bias");
    float* scale_ptr = create_weights(scale, "scale");

    TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT,
                                         static_cast<void*>(scale_ptr), 1};
    TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                         static_cast<void*>(bias_ptr), 1};
    TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    nvinfer1::ILayer* layer = nullptr;
63 64 65 66 67 68

    auto input_dim = input->getDimensions();

    nvinfer1::IShuffleLayer* expand_layer = nullptr;
    nvinfer1::IShuffleLayer* squeeze_layer = nullptr;

69 70 71 72 73 74 75 76 77 78
    if (input_dim.nbDims < 3 + dynamic_shape_offset) {
      nvinfer1::Dims expand_shape;
      expand_shape.nbDims = 3 + dynamic_shape_offset;
      for (int i = 0; i < 3 + dynamic_shape_offset; i++) {
        if (i < input_dim.nbDims) {
          expand_shape.d[i] = input_dim.d[i] < 0 ? 0 : input_dim.d[i];
        } else {
          expand_shape.d[i] = 1;
        }
      }
79
      expand_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
80
      expand_layer->setReshapeDimensions(expand_shape);
81 82 83
      input = expand_layer->getOutput(0);
    }

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    if (bias_after_scale) {
      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *input, nvinfer1::ScaleMode::kUNIFORM,
          shift_weights.get(), scale_weights.get(), power_weights.get());
    } else {
      // add bias
      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *(input), nvinfer1::ScaleMode::kUNIFORM,
          shift_weights.get(), power_weights.get(), power_weights.get());
      // mul scale
      layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *(layer->getOutput(0)), nvinfer1::ScaleMode::kUNIFORM,
          power_weights.get(), scale_weights.get(), power_weights.get());
    }

99 100 101
    PADDLE_ENFORCE_EQ(layer != nullptr, true,
                      platform::errors::Fatal("Create scale layer failed."));

102 103 104 105 106 107
    if (input_dim.nbDims < 3 + dynamic_shape_offset) {
      nvinfer1::Dims squeeze_shape;
      squeeze_shape.nbDims = input_dim.nbDims;
      for (int i = 0; i < squeeze_shape.nbDims; i++) {
        squeeze_shape.d[i] = input_dim.d[i] < 0 ? 0 : input_dim.d[i];
      }
108 109
      squeeze_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(layer->getOutput(0)));
110
      squeeze_layer->setReshapeDimensions(squeeze_shape);
111 112
      layer = static_cast<nvinfer1::ILayer*>(squeeze_layer);
    }
113 114 115 116 117 118 119 120 121
    RreplenishLayerAndOutput(layer, "scale", {out_name}, test_mode);
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(scale, ScaleOpConverter);