optimizer.html 20.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Optimizer &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../../genindex.html"/>
        <link rel="search" title="Search" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html"/>
        <link rel="up" title="Model Configuration" href="../model_configs.html"/>
        <link rel="next" title="Pooling" href="pooling.html"/>
38
        <link rel="prev" title="Evaluators" href="evaluators.html"/> 
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">API</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
126 127 128 129 130
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html#introduction">Introduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html#preparations">Preparations</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html#command-line-arguments">Command-line arguments</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html#use-cluster-platforms-or-cluster-management-tools">Use cluster platforms or cluster management tools</a></li>
131 132
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
133
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
134 135
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
136 137 138 139
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
140 141 142 143 144 145 146
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">API</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="../model_configs.html">Model Configuration</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="layer.html">Layers</a></li>
147
<li class="toctree-l3"><a class="reference internal" href="evaluators.html">Evaluators</a></li>
148 149 150 151 152 153
<li class="toctree-l3 current"><a class="current reference internal" href="#">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
154
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a></li>
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../../index_en.html">API</a> > </li>
      
        <li><a href="../model_configs.html">Model Configuration</a> > </li>
      
    <li>Optimizer</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="optimizer">
192
<h1>Optimizer<a class="headerlink" href="#optimizer" title="Permalink to this headline"></a></h1>
193 194
<div class="section" id="momentum">
<h2>Momentum<a class="headerlink" href="#momentum" title="Permalink to this headline"></a></h2>
195 196
<p>Optimizers(update equation) for SGD method.</p>
<p>TODO(yuyang18): Complete comments.</p>
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Momentum</code><span class="sig-paren">(</span><em>momentum=None</em>, <em>sparse=False</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>SGD Optimizer.</p>
<p>SGD is an optimization method, trying to find a neural network that
minimize the &#8220;cost/error&#8221; of it by iteration. In paddle&#8217;s implementation
SGD Optimizer is synchronized, which means all gradients will be wait to
calculate and reduced into one gradient, then do optimize operation.</p>
<p>The neural network consider the learning problem of minimizing an objective
function, that has the form of a sum</p>
<div class="math">
\[Q(w) = \sum_{i}^{n} Q_i(w)\]</div>
<p>The value of function Q sometimes is the cost of neural network (Mean
Square Error between prediction and label for example). The function Q is
parametrised by w, the weight/bias of neural network. And weights is what to
be learned. The i is the i-th observation in (trainning) data.</p>
<p>So, the SGD method will optimize the weight by</p>
<div class="math">
\[w = w - \eta \nabla Q(w) = w - \eta \sum_{i}^{n} \nabla Q_i(w)\]</div>
<p>where <span class="math">\(\eta\)</span> is learning rate. And <span class="math">\(n\)</span> is batch size.</p>
</dd></dl>

219 220 221
</div>
<div class="section" id="adam">
<h2>Adam<a class="headerlink" href="#adam" title="Permalink to this headline"></a></h2>
222 223
<p>Optimizers(update equation) for SGD method.</p>
<p>TODO(yuyang18): Complete comments.</p>
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adam</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>epsilon=1e-08</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adam optimizer.
The details of please refer <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m(w, t) &amp; = \beta_1 m(w, t-1) + (1 - \beta_1) \nabla Q_i(w) \\
v(w, t) &amp; = \beta_2 v(w, t-1) + (1 - \beta_2)(\nabla Q_i(w)) ^2 \\
w &amp; = w - \frac{\eta}{\sqrt{v(w,t) + \epsilon}}\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in equation.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in equation. It is used to prevent
divided by zero.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

249 250 251
</div>
<div class="section" id="adamax">
<h2>Adamax<a class="headerlink" href="#adamax" title="Permalink to this headline"></a></h2>
252 253
<p>Optimizers(update equation) for SGD method.</p>
<p>TODO(yuyang18): Complete comments.</p>
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adamax</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adamax optimizer.</p>
<p>The details of please refer this <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m_t &amp; = \beta_1 * m_{t-1} + (1-\beta_1)* \nabla Q_i(w) \\
u_t &amp; = max(\beta_2*u_{t-1}, abs(\nabla Q_i(w))) \\
w_t &amp; = w_{t-1} - (\eta/(1-\beta_1^t))*m_t/u_t\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in the equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

277 278 279
</div>
<div class="section" id="adagrad">
<h2>AdaGrad<a class="headerlink" href="#adagrad" title="Permalink to this headline"></a></h2>
280 281
<p>Optimizers(update equation) for SGD method.</p>
<p>TODO(yuyang18): Complete comments.</p>
282 283 284 285 286 287 288 289 290 291 292
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaGrad</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adagrad(for ADAptive GRAdient algorithm) optimizer.</p>
<p>For details please refer this <a class="reference external" href="http://www.magicbroom.info/Papers/DuchiHaSi10.pdf">Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization</a>.</p>
<div class="math">
\[\begin{split}G &amp;= \sum_{\tau=1}^{t} g_{\tau} g_{\tau}^T \\
w &amp; = w - \eta diag(G)^{-\frac{1}{2}} \circ g\end{split}\]</div>
</dd></dl>

293 294 295
</div>
<div class="section" id="decayedadagrad">
<h2>DecayedAdaGrad<a class="headerlink" href="#decayedadagrad" title="Permalink to this headline"></a></h2>
296 297
<p>Optimizers(update equation) for SGD method.</p>
<p>TODO(yuyang18): Complete comments.</p>
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">DecayedAdaGrad</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaGrad method with decayed sum gradients. The equations of this method
show as follow.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= 1/sqrt( ( E(g_t^2) + \epsilon )\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; The <span class="math">\(\rho\)</span> parameter in that equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; The <span class="math">\(\epsilon\)</span> parameter in that equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

320 321 322
</div>
<div class="section" id="adadelta">
<h2>AdaDelta<a class="headerlink" href="#adadelta" title="Permalink to this headline"></a></h2>
323 324
<p>Optimizers(update equation) for SGD method.</p>
<p>TODO(yuyang18): Complete comments.</p>
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaDelta</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaDelta method. The details of adadelta please refer to this
<a class="reference external" href="http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf">ADADELTA: AN ADAPTIVE LEARNING RATE METHOD</a>.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= sqrt( ( E(dx_{t-1}^2) + \epsilon ) / ( \
                  E(g_t^2) + \epsilon ) ) \\
E(dx_t^2) &amp;= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

349 350 351
</div>
<div class="section" id="rmsprop">
<h2>RMSProp<a class="headerlink" href="#rmsprop" title="Permalink to this headline"></a></h2>
352 353
<p>Optimizers(update equation) for SGD method.</p>
<p>TODO(yuyang18): Complete comments.</p>
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">RMSProp</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>RMSProp(for Root Mean Square Propagation) optimizer. For details please
refer this <a class="reference external" href="http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf">slide</a>.</p>
<p>The equations of this method as follows:</p>
<div class="math">
\[\begin{split}v(w, t) &amp; = \rho v(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2 \\
w &amp; = w - \frac{\eta} {\sqrt{v(w,t) + \epsilon}} \nabla Q_{i}(w)\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; the <span class="math">\(\rho\)</span> in the equation. The forgetting factor.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

377 378 379 380 381 382 383 384 385 386 387 388 389
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="pooling.html" class="btn btn-neutral float-right" title="Pooling" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
390
        <a href="evaluators.html" class="btn btn-neutral" title="Evaluators" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
424 425
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
426 427 428 429 430
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
431
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
432 433 434 435 436 437 438 439 440 441 442 443 444 445
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>